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Complex behavioural changes after odour exposure

in Drosophila larvae

JULIEN COLOMB, NICOLA GRILLENZONI, REINHARD F. STOCKER & ARIANE RAMAEKERS

Department of Biology, University of Fribourg

A variety of odorants attract Drosophila larvae, although this behaviour can be modulated by experience.
For instance, larvae pre-exposed to an attractive odorant may subsequently display less attraction towards
the same compound. In previous reports, this phenomenon has been interpreted as a drop in olfactory
sensitivity, caused by sensory adaptation. We tried to elucidate the basis of this behavioural modification
by pre-exposing larvae to various odours. After multiple pre-exposure cycles larvae were repulsed by ini-
tially attractive odours, and pre-exposure did not change the threshold concentration driving a behavioural
response. We therefore believe that sensitivity to the odorant was only slightly affected in our protocol.
Our results thus do not support the previous interpretation and rather suggest that olfactory pre-exposure
induces a change in the hedonic value of the odour. Although we did not succeed in elucidating the exact
nature of the underlying mechanism, we can reject an association of the odour with the absence of food as
an interpretation of the observed behavioural changes; this is because addition of food did not abolish the
repulsion to the pre-exposed odour. In addition to ruling out previous interpretations of odour pre-expo-
sure effects, this study stresses the complexity of Drosophila larval behaviour.

Both vertebrates and invertebrates show efficient behav-
iour in response to biologically relevant olfactory signals.
They are able to extract odours related to food, dangerous
conditions or mates from a highly complex chemical
environment. Accordingly, their sensitivity to background
odours is subject to modification, acting mainly through
the mechanism of olfactory adaptation. In addition, the
actual meaning of an odour is not rigidly programmed, but
depends on its context and may change over time. There-
fore, the olfactorily driven behaviours of animals tend
to adapt to the local environment, notably by olfactory
learning. These behavioural modifications, albeit well de-
fined in human psychophysiological assays, are difficult to
identify in experiments involving animal models.
Olfactory adaptation is defined by psychophysiologists

as a reduction in sensitivity to an odour after repeated or

prolonged exposure to that same odour (Dalton 2000).
This definition comprises both olfactory adaptation and
habituation as defined by Bernhard & van der Kooy
(2000), and gives no indication about its cellular basis,
that is, sensory adaptation (Zufall & Leinders-Zufall
2000) or central habituation (Wilson 2000). Different
properties of olfactory adaptation behaviour have been
highlighted. For instance, the degree of adaptation de-
pends on the intensity of the odorant during pre-expo-
sure, and is odorant specific. Indeed, odorant specificity
has been used to test discriminative ability in Drosophila:
a decrease in the response to an odour B after pre-exposure
to an odour A has been interpreted as an incomplete
discrimination of the two odours (Cobb & Domain
2000; Boyle & Cobb 2005).
Olfactory learning has been studied intensively, in

particular in the context of classical conditioning in
both vertebrates and invertebrates, using many different
approaches (reviewed in Milner et al. 1998; Davis 2005).
For instance, in Drosophila larvae, olfactory or visual cues
(CS; conditioned stimulus) become more attractive after
association with a pleasant gustatory stimulus (US; uncon-
ditioned stimulus; Scherer et al. 2003; Gerber et al. 2004;
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Honjo & Furukubo-Tokunaga 2005). In some cases, the
new behaviour resulting from the association between
a CS and a US can be elicited by another stimulus, CS0, si-
milar to the CS. This phenomenon, called generalization,
has been used to measure similarity between different and
often discriminated stimuli (Ghirlanda & Enquist 2003;
Wright & Smith 2004; Guerrieri et al. 2005).

The processes of adaptation and learning (i.e. the loss of
sensitivity and a change in hedonic value, respectively)
are theoretically clearly distinct, but are empirically
difficult to separate. For instance, olfactory adaptation is
commonly tested by comparing the olfactory responses of
animals pre-exposed to the odorant with the responses of
control animals. A lower response is interpreted as a re-
duced sensitivity to the odour, reflecting olfactory adap-
tation. However, this lower response could also indicate
that the animal values the odour as less positive. Such an
effect was demonstrated in a study on Caenorhabditis ele-
gans where pre-exposure to an odorant in the absence of
food, a protocol previously thought to lead to olfactory
adaptation (Colbert & Bargmann 1995), was shown to
lead to olfactory associative learning (Nuttley et al.
2002). In this situation, the absence of food acts as a neg-
ative US associated with the odorant, leading to a decrease
in the chemotactic response towards that odorant.
Drosophila has been used for decades to decode the neu-

ral and genetic basis of behaviour. Since the olfactory
system of larvae is organized similarly to the adult one de-
spite its limited number of odorant receptor neurons
(Kreher et al. 2005; Ramaekers et al. 2005), the fruit fly
larva appears to be a promising model system to study
olfactory processing. There is evidence for olfactory asso-
ciative learning in Drosophila larvae (Scherer et al. 2003;
Hendel et al. 2005; Honjo & Furukubo-Tokunaga 2005).
On the other hand, Cobb & Domain (2000) and Boyle &
Cobb (2005) used olfactory adaptation of larvae to test ol-
factory discrimination and, accordingly, proposed models
of peripheral olfactory coding. Wuttke & Tompkins (2000)
tested larvae mutant for trp, a gene encoding a calcium
channel whose expression is required during development
for olfactory adaptation in the adult (Störtkuhl et al.
1999). They observed no effect of trp loss of function in
their experimental set-up. However, Wuttke & Tompkins
(2000) assumed that only olfactory adaptation was modi-
fying larval behaviour, and did not test for the presence of
different forms of learning.
We investigated the mechanisms underlying behaviou-

ral changes in Drosophila larvae after pre-exposure to
odorants, using a modified protocol from Cobb &
Domain (2000). We analysed our data in the context of
sensory adaptation, increase in sensitivity and associative
learning.

GENERAL METHODS

Stocks

Flies from a Canton-S strain (provided by T. Préat,
ESPCI, Paris, France) were reared on standard corn food
medium at 25�C on a 12:12 h light:dark cycle.

Odorants

Butanol (Fluka cat. 19420, Buchs, Switzerland), hexanol
(Fluka cat. 52828), nonanol (Fluka cat. 74278), ethyl
caproate (Aldrich/Sigma cat. 14.896-2, Buchs, Switzerland)
and ethyl acetate (Merck Schweiz cat. 109623.1000,
Dietikon, Switzerland) were used, all highest purity grade.
Odorants were displayed on filter paper discs 10 mm in
diameter (Schleicher and Schuell cat. 589/2, Bottmingen,
Switzerland).

Behavioural Tests

We carried out experiments on agar plates consisting of
petri dishes 85 mm in diameter without ergot (Greiner/
Huber cat. 632180, Reinach, Switzerland) covered with
2.5% Select Agar (Invitrogen/Lubio Science cat. 30391-
023, Lucerne, Switzerland). Sugar and dry yeast plates
were covered with 1% Select Agar containing 0.5% auto-
lysed yeast (DIFCO/VWR International cat. 0229-17-6, Di-
etikon, Switzerland) and 7.5% sugar (from a local grocery
store). Yeast plates were produced by covering the surface
of the standard agar plates with fresh baking yeast (from
a local grocery store) soaked with distilled water. We
used young third-instar larvae (75 � 3 h after egg laying).
As no difference was seen between tests done in the morn-
ing or afternoon, we pooled all data. Control and experi-
mental groups were always tested in parallel, using
larvae from the same culture bottle.

Larvae were washed from the food with 17% sucrose
solution. After three rinses in tap water, about 50 larvae
were put in a petri dish for 5e15 min. They were then
transferred to a pre-exposure plate that contained either
an odorant (pre-exposed group) or water (control group)
spread on four 10-mm filter paper disks. Filter papers
were evenly spaced along the edge of the plate, placed
on the agar surface. The amount of odorant indicated be-
low, for each experiment, for the pre-exposure plates
relates to the total, i.e. 10 ml corresponds to 4 � 2.5 ml. Lar-
vae were pre-exposed in the dark for 10 min in a switched-
off incubator at room temperature under a fume hood.
Then, they were transferred into a clean agar plate for a
rest period of 10 min under the fume hood in the presence
of light. We carried out this procedure, 10 min of pre-
exposure and 10 min of rest, either once or three times.

We carried out the tests as described previously (Heim-
beck et al. 1999). Briefly, we placed larvae in the middle
of an agar plate containing a pair of filter paper disks on op-
posite sides, soaked, respectively, with odorant and water.
The odorant was put randomly on the left or the right
side of the plate. The test plates were then placed under
a cardboard cache, in a fume hood. After 5 min, we took
a picture of each test plate and counted the larvae. A re-
sponse index (RI) was calculated: RI ¼ (Ns � Nc)/(Ns þ Nc).
Ns represents the number of larvae at a distance
d � 30 mm from the odour source. Nc is the number of lar-
vae found inside an identical surface on the opposite side.
Positive and negative RIs reflect attraction and avoidance,
respectively, and RI ¼ 0 indicates indifferent behaviour
(tested by measuring attraction towards water). Data pre-
sented in the same graph were always from experiments
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done in parallel. The proportion of larvae found in the neu-
tral area between disks was constant between groups; we
discarded the data if this proportion was higher than 40%
(limit chosen arbitrarily before doing the experiments).
Odorants were diluted in water. Since the chemicals

were soaked on wet filter paper, even pure odorants were
actually diluted in water; we can thus assume that vapour
concentration is directly proportional to the correspond-
ing volume of pure soaked odorant (Cometto-Muniz et al.
2003).

Statistics

For group comparison, we used the arcsine transforma-
tion of the proportion of larvae moving to the odorant
[A ¼ Asine(square root(R)) where R ¼ Ns/(Ns þ Nc) ¼
(RI þ 1)/2)]. The value (A) was the dependent variable of
a univariate test (two tailed), weighted by the total num-
ber of choosers (T ¼ Ns þ Nc); in cases where the side
containing the odorant (left or right side of the plate)
had an effect, this information was added as a fixed factor.
For comparison between more than two groups, we used
a Tukey post hoc test. A difference between two groups
was always confirmed by a two-tailed ManneWhitney
U test with P < 0.01.
A significant difference from RI ¼ 0 was assessed with

a one-sample t test. The statistical tests were carried out
and plots were generated with SPSS for Macintosh version
11 (SPSS Suisse SA, 8044 Zürich, Switzerland).

NO OLFACTORY ADAPTATION?

Experiment 1

To measure olfactory adaptation, we used a protocol
modified from Cobb & Domain (2000). Briefly, we tested
the behavioural effect of odour pre-exposure by compar-
ing the olfactory response of larvae pre-exposed to an
odorant with the response of larvae pre-exposed to water.
We measured this response by calculating the proportion
of larvae moving towards or away from an odorant (che-
motaxis); the results are depicted as a response index
(RI) ranging from e1 (total repulsion) to þ1 (total attrac-
tion). Whereas Cobb & Domain pre-exposed the larvae
for 1 h, we used a 10-min pre-exposure period and we al-
lowed the larvae to rest for another 10 min before testing
them (for details, see General Methods).
As pretests, we compared the response to butanol of three

groups of larvae: larvae kept before the tests for 10 min in
a normal agar plate, larvae kept for 10 min in an empty
plate and larvae that were not handled before the tests
(na€ıve larvae). The first grouphad ahigher RI than the other
two groups (normal agar plate: X� SEM ¼ 0:85� 0:2;
empty plate: 0.55 � 0.6; na€ıve: 0.59 � 0.4). Handling of lar-
vae therefore did not appear to have any effect per se, but
a contextual effect is possible.

Results
Figure 1a shows that control larvae were attracted by

ethyl acetate (1 ml), whereas larvae pre-exposed for 10 min

to 4 ml of this compound had RIs that were reduced by
85%, to a level not significantly different from 0 (P > 0.2).

Experiment 2

In previous studies, results comparable to those of
experiment 1 were interpreted as olfactory adaptation
(Störtkuhl et al. 1999; Cobb & Domain 2000; Wuttke &
Tompkins 2000). However, an alternative hypothesis was
not addressed in these studies, i.e. that the larvae may
have associated the odorant with an unidentified negative
US. To discriminate between these two interpretations, we
carried out two more experiments (experiments 2 and 3).
In experiment 2, the larvae were exposed three times to

ethyl acetate or butanol. If associative learning indeed
occurred, repeating the pre-exposure to the odorant
should increase the strength of the association between
the odorant (which corresponds to the CS) and the
unidentified negative US (Rescorla & Wagner 1972).
Hence, negative RIs are predicted. In contrast, if the
changes were due to olfactory adaptation only, further
pre-exposure cycles would lead to an RI closer to 0.

Results
After three cycles of pre-exposure to ethyl acetate, larvae

showed a lower score than those exposed only once and
indeed avoided the odour (P < 0.001), whereas control lar-
vae were still normally attracted (Fig. 1a). Larvae pre-
exposed one or three times to 10 ml of butanol were
repelled by butanol (2.5 ml), whereas control larvae were
strongly attracted (Fig. 1b). Hence the results were not spe-
cific to ethyl acetate.

Experiment 3

In experiment 3, we tested the effect of pre-exposure to
two repelling odorants: nonanol (Cobb & Domain 2000)
at a concentration of 2.5 ml and ethyl caproate at 0.5 ml
which we found to be strongly repulsive for larvae (A.
Ramaekers, unpublished data). If pre-exposure was associ-
ated with olfactory adaptation, RIs would be expected to
be closer to 0 than those of the controls. On the other
hand, if pre-exposure leads to an association between
the repelling odorant (CS) and a negative US, one should
observe an increase in avoidance, i.e. more negative RIs
than the controls.

Results
With both odorants, the RIs of control and pre-exposed

larvae were indistinguishable even with a very high
sample size (nonanol). This indicates that pre-exposure
had no effect on larval olfactory responses to these
odorants (Fig. 1c, d).

STIMULUS STRENGTH AND SPECIFICITY

The reduction in olfactory attraction from adaptation
depends on both stimulus strength and stimulus specific-
ity (Dalton 2000). Nevertheless, such dependence is also
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a characteristic of other learning mechanisms, such as
classical conditioning (Ghirlanda & Enquist 2003; Wright
& Smith 2004). In previous studies (Störtkuhl et al. 1999;
Cobb & Domain 2000; Wuttke & Tompkins 2000; Fletcher
& Wilson 2002), researchers interpreted such observations
as evidence for the presence of adaptation in their exper-
imental set-up. To examine this interpretation, we tested
whether those characteristics also applied to our protocol,
although our protocol does not solely involve adaptation.
We tested the response of larvae towards 2.5 ml of butanol
after pre-exposure to increasing concentrations of this
odorant. To investigate the role of stimulus specificity on
the behavioural change, we tested the response towards
butanol (2.5 ml) after pre-exposure to different odorants.

Results

We found a negative correlation between the propor-
tion of larvae approaching the odorant and the concen-
tration of odorant during the pre-exposure (covariate
analysis: F1,29 ¼ 63.7, P < 0.001; Fig. 2a). When pre-
exposed to 10 ml of butanol, larvae subsequently avoided

the odorant, whereas they showed a null RI when pre-
exposed to smaller concentrations of this compound.

Pre-exposure to ethyl acetate had no or little effect on
the attraction towards butanol (P ¼ 0.059; Fig. 2b), sug-
gesting that the drop in RI following pre-exposure was
indeed stimulus specific. In contrast, the response towards
butanol of larvae pre-exposed to hexanol (another ali-
phatic alcohol) was lower than the RI of control larvae
pre-exposed to water (P < 0.001), and higher than the RI
of larvae pre-exposed to butanol (P ¼ 0.026; Fig. 2b).

INCREASE IN OLFACTORY SENSITIVITY?

Studies on human olfaction have shown that exposure to
an odorant can sometimes increase olfactory sensitivity
(Dalton 1996) and that this effect may be the result of
peripheral mechanisms (Yee & Wysocki 2001). If higher
concentrations of odorant become aversive, such an effect
could explain our results, as proposed by Boyle & Cobb
(2005). We therefore investigated this hypothesis, by test-
ing the responses of larvae towards different concentra-
tions of ethyl acetate, after pre-exposure to 4 ml of either
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Figure 1. Olfactory responses of Drosophila larvae pre-exposed to water (-) or to an odorant (,) for 10 min or 3 � 10 min, as indicated. For
details of the response index, see text; a positive index indicates attraction, a negative one repulsion. The concentrations used in pre-exposure

were four times higher than those used for the tests. (a) 1 ml of ethyl acetate. Letters represent different groups of data significantly different from

each other at P < 0.01. (b) 2.5 ml of butanol; positive and negative response indices are significantly different. (c) 0.5 ml of ethyl caproate or (d) 2.5 ml

of nonanol after 10 min pre-exposure. Means � 1 SEM are shown. Numbers of independent tests involving about 50 larvae each are also shown.
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this compound or water. We chose to test responses to-
wards ethyl acetate because this odorant appears to be
repulsive at high concentration. If an effect of exposure
on sensitivity shifts the doseeresponse curve to the left
(according to the dashed line in Fig. 2c) as proposed by
Boyle & Cobb (2005), the detection threshold should
move towards a lower concentration.

Results

The results did not fit with this prediction. We rather
observed that the response of pre-exposed larvae followed
the curve of the control larvae, albeit with a lower ampli-
tude (Fig. 2c). In particular, it appeared that the detection
threshold remained stable. Thus, our results argue against
the presence of an effect of pre-exposure on sensitivity.

EFFECTS OF ADDING FOOD AND WATER

The observed odour avoidance behaviour of pre-exposed
larvae suggests that associative learning might be involved
in our experimental set-up. In an attempt to test this
hypothesis, we tried to identify the negative US that
might be causing the drop in olfactory responses after
pre-exposure. Indeed, in a similar paradigm, Nuttley et al.
(2002) showed that C. elegans associates odorants with the
absence of food which acts as a negative US. To determine
whether Drosophila larvae form similar associations, we
pre-exposed larvae in agar plates containing food, by add-
ing sucrose and dry yeast to the agar or by spreading fresh
baking yeast on the agar. Such ‘fresh yeast plates’ are
known to drive larval foraging behaviour (Pereira et al.
1995). Because learning performance can drop with
a change in context between learning and test phases (Ha-
ney & Lukowiak 2001; Law et al. 2004), pre-exposure and
tests were made in the same type of plates.

Results

The addition of sucrose and dry yeast to the agar plates
did not change the behaviour of control or of pre-exposed
larvae (Fig. 3a).Whenwe used fresh yeast, the larvae tended
to cluster on the yeast (data not shown), indicating that
they recognized it as a food source. Figure 3b shows that
the responses of all groups to butanol were closer to 0 in
yeast plates. A straightforward explanation could be
that odour or taste of the yeast distracted larvae from
responding to butanol during the test but hadno effect dur-
ing pre-exposure. The fact that the differences in the abso-
lute RI values between normal and yeast plates were similar
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Figure 2. Olfactory responses towards (a, b) butanol (2.5 ml) and (c)

ethyl acetate (different concentrations) after 10-min pre-exposure to
(a, c) different quantities of the same odorant or (b) different odours

or water. For details of the response index, see text; a positive index

indicates attraction, a negative one repulsion. In (c), 0 on the abscissa

represents 1 ml of pure odorant (the same condition as in Fig. 1a),
N � 8. C: Control; -: pre-exposed to 4 ml of pure ethyl acetate;

- - -: theoretical sensitization curve. Letters represent data significantly

different at P < 0.05; ‘bc’ means that the difference between this
group is not significantly different from either b or c, but is different

from a. Means � 1 SEM are shown. Numbers of independent tests

involving about 50 larvae each are also shown. *P < 0.05; **P < 0.01.
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for control and pre-exposed larvae (Fig. 3b, and data not
shown) argues in favour of this hypothesis. Furthermore,
after three cycles of exposure to butanol in yeast plates,
larvae were actively repelled by butanol (P < 0.01).
Additional experiments in which the amount of water

was increased in the plates did not affect behaviour (data
not shown), suggesting that dryness does not represent
a negative US either.

DISCUSSION

Intact Odour Sensitivity

Similar to previous studies (Cobb & Domain 2000;
Wuttke & Tompkins 2000; Boyle & Cobb 2005; Michels

et al. 2005), we observed that larvae modify their response
to an odorant after pre-exposure to the same compound.
We also confirmed that this modification is stimulus
specific and dependent upon the stimulus strength during
pre-exposure. In particular, the positive (attractive)
response to ethyl acetate dropped almost to 0 after one
pre-exposure cycle. Olfactory adaptation was previously
considered as the psychological basis of such observation.
In this study, we questioned this interpretation. In partic-
ular, by increasing the number of pre-exposure cycles
from one to three, we found that the larval response to
ethyl acetate was converted from attraction to avoidance.
In addition, in the case of butanol, one pre-exposure cycle
was sufficient to induce this inversion of behaviour. This
phenomenon had already been measured with octanol
(Cobb & Domain 2000), and was further investigated
recently using 1-h pre-exposure (Boyle & Cobb 2005).
The two protocols appear to produce qualitatively similar
data which might thus be the result of the same mecha-
nisms. Our results suggest that the difference between
the responses to ethyl acetate measured after one and
three pre-exposure cycles in our study was quantitative
rather than qualitative. The RI close to 0 measured after
one pre-exposure cycle to ethyl acetate could correspond
to a partial inversion of the olfactory behaviour rather
than a decrease in sensitivity, as was proposed by Cobb
& Domain (2000), Wuttke & Tompkins (2000) and Boyle
& Cobb (2005).

However, our observations could still be explained on
the basis of adaptation. As proposed by Cobb & Domain
(2000), an odorant would elicit responses in both ‘attrac-
tion’ and ‘repulsion’ receptor neurons (mediating attrac-
tive or repulsive behaviour, respectively). The latter
would adapt more slowly, being the only cells that remain
firing after pre-exposure. Consequently, a partial loss of
sensitivity would lead to repulsion. This model predicts
that, with further exposure, the response becomes extinct.
In contrast to this prediction, we observed that additional
periods of pre-exposure did not reduce the avoidance but,
on the contrary, tended to lead to more negative RIs.
Therefore, we propose that the change from attraction
to repulsion after several cycles of pre-exposure might
be the result of mechanisms different from adaptation.

Previous researchers also interpreted their findings in
terms of olfactory adaptation because the behavioural
modifications depended on stimulus intensity and stimu-
lus specificity, which are typical properties of olfactory
adaptation (Cobb & Domain 2000; Dalton 2000; Wuttke
& Tompkins 2000). However, we question this assump-
tion, since both properties also apply to our protocol,
which we believe to be largely independent of adaptation
mechanisms. Hence, other learning processes are charac-
terized by a dependence on both stimulus concentration
and stimulus specificity. This is, for instance, the case for
classical conditioning (Wright & Smith 2004).

Hypotheses to be Ruled Out

At first, we considered whether nonassociative mech-
anisms such as sensitization could be involved in the
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observed behavioural modifications. If sensitization was
induced by pre-exposure to the odorant, one should
observe a subsequent increment in response compared
to the control response, without an effect on sensitivity.
This hypothesis is obviously not compatible with our
results since pre-exposure led to a decrease in attraction
or even a shift towards avoidance, of the olfactory
responses.
An alternative hypothesis presented by Boyle & Cobb

(2005) predicts that pre-exposure would increase the sen-
sitivity to the odorant. In this case, a concentration c of
the odorant would be perceived as if a concentration
d > c had been presented (Dalton 1996), and the animals
would behave accordingly: the doseeresponse curve
would be shifted towards lower concentrations (see
dashed line in Fig. 2c). Since, as for adults, attractive odor-
ants might become repulsive to larvae at high concentra-
tions (Fig. 2c; see also Boyle & Cobb 2005), one could
predict that, after pre-exposure, a given concentration
eliciting an attractive response in the control conditions
would become repulsive. However, our results did not
confirm the shift to lower concentrations of the dosee
response curve after pre-exposure predicted by this model.
Furthermore, Boyle & Cobb (2005) strikingly observed no
increase in the attractiveness of any odour after prestimu-
lation with the same or a different odorant; their results
therefore do not fit with this hypothesis either.
Finally, we tested the hypothesis of a classical condi-

tioning. If larvae indeed associated odorants with the
absence of food, as do nematodes (Nuttley et al. 2002), ad-
dition of yeast to the pre-exposure plates should have
reduced or abolished the behavioural modification (An-
nau & Kamin 1961). In contrast, our experiments suggest
that they still learn in the presence of food (Fig. 3). Thus,
we conclude that the absence of food cannot be a major
US, since its suppression does not eliminate the behaviou-
ral modification.
Dryness could be ruled out as a US as well, since the

addition of water in the pre-exposure agar plate had no
effect on the behavioural modifications. According to
another report (Dukas 1999), the manipulation of larvae
per se may play the role of a negative US. However, in
our protocol, larvae were also manipulated before having
contact with the odorant. Consequently, the odour could
not be a good predictor of this putative US and should not
become associated with it (Rescorla 1968).
Bright light is an aversive stimulus for early third-instar

larvae (Gerber et al. 2004) and so might act as a US. How-
ever, since we kept the larvae in the dark during pre-expo-
sure and in the light during the rest period, a reinforcing
effect of light would act against the observed behaviour.
Boyle & Cobb (2005) obtained similar results to ours, al-

though in their set-up larvae were prevented from having
direct (gustatory) contact with the odorant; this contact
thus appears not to be required for the behavioural
change. However, a deleterious effect of high odorant con-
centrations could still act as the US. Assuming that the
noxious effect depends on odorant concentration, smaller
doses of odorant should be correlated with a weaker US.
Hence, this hypothesis predicts that pre-exposure to
decreasing concentrations of odorant should result in

smaller behavioural changes. This is indeed what we
observed in the case of butanol (Fig. 2a).

Fixed Hedonic Value for Repellent Odorants?

The fact that the response to nonanol and ethyl
caproate did not change after pre-exposure is striking.
While this result is difficult to interpret, it indicates that,
in the case of these repulsive odorants, there is no
evidence for the presence of olfactory adaptation or
olfactory learning. We propose that these odorants may
already possess an innate and fixed hedonic value that
could not be modified by our set-up. When Honjo &
Furukubo-Tokunaga (2005) tried to associate an odour
(CS) with sucrose (US), they found that this association
was possible only when using certain odorants and not
others. Their results show that larvae can react differently
to olfactory associative learning, depending on the odor-
ant chosen as the CS. Our observations provide another
example of this striking but poorly documented effect of
odorant identity on olfactory learning (see also Keene
et al. 2004).

Concluding Remarks

Although the interpretation of our results remains
largely open, we have shown that olfactory adaptation is
not sufficient to explain the behavioural modifications
provoked by pre-exposure to an odorant. Our results also
do not fit with an increase in odour sensitivity as proposed
by Boyle & Cobb (2005). Our simplest working model in-
volves an associative learning process. However, we were
not able to confirm this hypothesis, because we did not
succeed in identifying a negative US. Alternatively, differ-
ent mechanisms could act in parallel, or other nonassocia-
tive learning mechanisms are conceivable (e.g. disinterest
of larvae for a previously experienced odorant).
Drosophila larvae are often considered to be continuous

feeders with a limited behavioural repertoire. In particular,
their olfactory system, characterized by no more than 21
receptor neurons, is thought to be rudimentary. In con-
trast, this study and others (Scherer et al. 2003; Gerber
et al. 2004; Honjo & Furukubo-Tokunaga 2005) stress
the complexity and plasticity of larval olfactorily driven
behaviour which could mirror the importance of odour
perception for larval survival. Together with evidence
demonstrating adult-like connectivity in the larval olfac-
tory system (Ramaekers et al. 2005), they suggest that
olfactory cues may be much more crucial for larval sur-
vival than previously assumed.
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