5,761 research outputs found

    Moisture management properties of eri silk knitted fabrics

    Get PDF
    389-395Moisture management and wicking properties of eri silk knitted fabrics have been studied. Three different knit structures, namely single jersey, single pique and honeycomb, have been developed with the combination of two different yarn count and tightness level. The fabrics developed are analyzed in terms of wetting time, spreading speed, absorption rate, and maximum wetting radius, accumulative one way transport index (AOTI) and overall moisture management capacity (OMMC). It is discerned that the variables, such as yarn count, fabric tightness and knitting structure, have a significant influence on the wicking and moisture management properties. The OMMC indexes of eri silk knitted fabric are found to range from ‘very good’ to “excellent’ category, which indicates the suitability of eri silk yarn to skin fit as well as active wear applications

    A VLA Search for the Geminga Pulsar: A Bayesian Limit on a Scintillating Source

    Get PDF
    We derive an upper limit of 3 mJy (95% confidence) for the flux density at 317 MHz of the Geminga pulsar (J0633+1746). Our results are based on 7 hours of fast-sampled VLA data, which we averaged synchronously with the pulse period using a period model based on CGRO/EGRET gamma-ray data. Our limit accounts for the fact that this pulsar is most likely subject to interstellar scintillations on a timescale much shorter than our observing span. Our Bayesian method is quite general and can be applied to calculate the fluxes of other scintillated sources. We also present a Bayesian technique for calculating the flux in a pulsed signal of unknown width and phase. Comparing our upper limit of 3 mJy with the quoted flux density of Geminga at 102 MHz, we calculate a lower limit to its spectral index of 2.7. We discuss some possible reasons for Geminga's weakness at radio wavelengths, and the likelihood that many of the unidentified EGRET sources are also radio-quiet or radio-weak Geminga-like pulsars.Comment: 27 pages, including figures. Published in Ap

    Moisture management properties of eri silk knitted fabrics

    Get PDF
    Moisture management and wicking properties of eri silk knitted fabrics have been studied. Three different knit structures,namely single jersey, single pique and honeycomb, have been developed with the combination of two different yarn countand tightness level. The fabrics developed are analyzed in terms of wetting time, spreading speed, absorption rate, andmaximum wetting radius, accumulative one way transport index (AOTI) and overall moisture management capacity(OMMC). It is discerned that the variables, such as yarn count, fabric tightness and knitting structure, have a significantinfluence on the wicking and moisture management properties. The OMMC indexes of eri silk knitted fabric are found torange from ‘very good’ to “excellent’ category, which indicates the suitability of eri silk yarn to skin fit as well as activewear applications

    A Search for Sub-Millisecond Pulsars

    Full text link
    We have conducted a search of 19 southern Galactic globular clusters for sub-millisecond pulsars at 660 MHz with the Parkes 64-m radio telescope. To minimize dispersion smearing we used the CPSR baseband recorder, which samples the 20 MHz observing band at the Nyquist rate. By possessing a complete description of the signal we could synthesize an optimal filterbank in software, and in the case of globular clusters of known dispersion measure, much of the dispersion could be removed using coherent techniques. This allowed for very high time resolution (25.6 us in most cases), making our searches in general sensitive to sub-millisecond pulsars with flux densities greater than about 3 mJy at 50 cm. No new pulsars were discovered, placing important constraints on the proportion of pulsars with very short spin periods in these clusters.Comment: 8 pages, 3 figures, to appear in Ap

    Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars

    Full text link
    Massive stars are the key agents of feedback. Consequently, quantitative analysis of massive stars are required to understand how the feedback of these objects shapes/ creates the large scale structures of the ISM. The giant HII region N206 in the Large Magellanic Cloud contains an OB association that powers a X-ray superbubble, serving as an ideal laboratory in this context. We obtained optical spectra with the muti-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we use the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical parameters and nitrogen abundances of our sample stars are determined by fitting synthetic spectra to the observations. The stellar and wind parameters of nine Of-type stars are used to construct wind momentum,luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant which has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age less than 4 million years, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.Comment: Accepted for the pubblication in Astronomy & Astrophysic

    On the form of growing strings

    Full text link
    Patterns and forms adopted by Nature, such as the shape of living cells, the geometry of shells and the branched structure of plants, are often the result of simple dynamical paradigms. Here we show that a growing self-interacting string attached to a tracking origin, modeled to resemble nascent polypeptides in vivo, develops helical structures which are more pronounced at the growing end. We also show that the dynamic growth ensemble shares several features of an equilibrium ensemble in which the growing end of the polymer is under an effective stretching force. A statistical analysis of native states of proteins shows that the signature of this non-equilibrium phenomenon has been fixed by evolution at the C-terminus, the growing end of a nascent protein. These findings suggest that a generic non-equilibrium growth process might have provided an additional evolutionary advantage for nascent proteins by favoring the preferential selection of helical structures.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let
    corecore