6,592 research outputs found

    Simulation of mirror inversion of quantum states in an XY spin chain using NMR

    Full text link
    We report an experimental quantum simulation of unitary dynamics of an XY spin chain with pre-engineered couplings. Using this simulation, we demonstrate the mirror inversion of quantum states, proposed by Albanese et al. [Phys. Rev. Lett. 93, 230502 (2004)]. The experiment is performed with a 5-qubit dipolar coupled spin system using nuclear magnetic resonance techniques. To perform quantum simulation we make use of the recently proposed unitary operator decomposition algorithm of Ajoy et al. [Phys. Rev. A 85, 030303 (2012)] along with numerical pulse optimization techniques. Further, using mirror inversion, we demonstrate that entangled states can be transferred from one end of the chain to the other end. The simulations are implemented with high experimental fidelity, which implies that these kind of simulations may be possible in larger systems.Comment: 9 pages, 6 figure

    Violation of Entropic Leggett-Garg Inequality in Nuclear Spins

    Full text link
    We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi et al. (arXiv: 1208.4491v2 (2012)). This inequality places a bound on the statistical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the `ideal negative result measurement' procedure with the help of an ancilla qubit. The experimental results show a clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit system, we experimentally demonstrate that three-time joint probabilities do not reproduce certain two-time marginal probabilities.Comment: 5 pages, 5 figures, 1 page supplementar

    E-Learning Tools and Technologies for Rural Development Community with special reference to training: Experiences of National Institute of Rural Development

    Get PDF
    The paper introduces various vital aspects of DLE, highlighting e-learning philosophy, tools and selection criteria for e-learning solutions. It presents a brief account of National Institute of Rural Development (NIRD) initiatives that have been taken using ICT tools by for the training of personnel involved in rural development programmes of central and state governments

    Software reusability development through NFL approach for identifying security based inner relationships of affecting factors

    Get PDF
    In component based software reusability development process, the software developers have to choose the best components which are self adaptive future to overcome the functional errors, framework mismatches, violation of user level privacy issues and data leakage feasibilities. The software developers can build high quality software applications by taking the consideration of the reusable components which are more suitable to provide high level data security and privacy. This paper has proposing the neural based fuzzy framework based approach to estimate the reusable components which are directly and indirectly involve the security and privacy to improve the quality of the software system. This approach has considered the twenty effecting factors and fifty three attribute matrices. It has formed with three stages of execution scenarios. The first stage has executed with eleven effecting factors and eighteen attribute matrices for identification of supporting software reusability components, the second stage has executed with four effecting factors and thirty five attribute matrices for identification of sub-internal relationships in terms of security-privacy, and the third stage has executed with eight effecting factors and six attribute matrices for identification of sub of sub-internal relationships in terms of security risk estimation. This analytical finding proposes a fuzzy logic model to evaluate the most feasible effecting factors that influence the enterprise level data security-privacy practices at real time environment

    Entropy of Anisotropic Universe and Fractional Branes

    Get PDF
    We obtain the entropy of a homogeneous anisotropic universe applicable, by assumption, to the fractional branes in the universe in the model of Chowdhury and Mathur. The entropy for the 3 or 4 charge fractional branes thus obtained is not of the expected form E^{{3/2}} or E^2. One way the expected form is realised is if p \to \rho for the transverse directions and if the compact directions remain constant in size. These conditions are likely to be enforced by brane decay and annihilation, and by the S, T, U dualities. T duality is also likely to exclude high entropic cases, found in the examples, which arise due to the compact space contracting to zero size. Then the 4 charge fractional branes may indeed provide a detailed realisation of the maximum entropic principle we proposed recently to determine the number (3 + 1) of large spacetime dimensions.Comment: Version 2: 21 pages. More discussion and references added. To appear in General Relativity and Gravitatio

    Monogamy of quantum correlations reveals frustration in a quantum Ising spin system: Experimental demonstration

    Full text link
    We report a nuclear magnetic resonance experiment, which simulates the quantum transverse Ising spin system in a triangular configuration and further show that the monogamy of quantum correlations can be used to distinguish between the frustrated and non-frustrated regimes in the ground state of this system. Adiabatic state preparation methods are used to prepare the ground states of the spin system. We employ two different multipartite quantum correlation measures to analyze the experimental ground state of the system in both the frustrated and non-frustrated regimes. In particular, we use multipartite quantum correlation measures generated by monogamy considerations of negativity, a bipartite entanglement measure, and that of quantum discord, an information-theoretic quantum correlation measure. As expected from theoretical predictions, the experimental data confirm that the non-frustrated regime shows higher multipartite quantum correlations compared to the frustrated one.Comment: Title in the published version is "Multipartite quantum correlations reveal frustration in a quantum Ising spin system", 7 pages, 4 figure

    Keratinase production by Bacillus megaterium RS1 using the statistical tool central composite design

    Get PDF
    Keratinase producing bacterium Bacillus megaterium RS1 was obtained from feather dumping site of Rajapalayam. The optimal level of the key variables (starch, feather meal, calcium chloride) was used to determine the effect of their interactions on keratinase production using the statistical tool [(Central composite design (CCD) of response surface methodology (RSM)]. The second-order quadratic model with the optimum conditions [(starch (1%); feather meal (3%) and calcium chloride (0.02%)] was used. The nearness of the coefficient of determination (R2 = 1.0000) to 1 ensures the satisfactory adjustment of the quadratic model to the experimental data. The maximum keratinase production was 142.9 U/ml.Keywords: Keratinase, Central composite design (CCD), response surface methodology (RSM), Bacillus megaterium RS1 starch, feather meal, calcium chloride

    IN VIVO EVALUATION OF QUINAPRIL TRILAYERED MATRIX TABLETS

    Get PDF
    Objective: The aim was to design, formulate, and evaluate the trilayer matrix tablets incorporated with quinapril for extend drug release. Methods: Quinapril trilayer matrix tablets were formulated using design of experiment software wherein initially 27 formulations (QF1-QF27) were designed for active layer from which one best formulation was chosen based on drug content, swelling index and in vitro release studies. The chosen formulation was formulated into extended release trilayed matrix tablet by varying proportions of polymers by direct compression and was evaluated for various physicochemical parameters, drug release. Best formulation was characterized for Fourier transform infrared (FTIR), stability, and pharmacokinetic study. Results: Out of 27 formulations highest drug release was exhibited by QF16 (98.85%) which was formulated into trilayer matrix tablets (AQF16- HQF16). Out of which EQF16 was found to exhibit highest values with 98.42% swelling index, 99.56% drug content, and 99.72% drug release in 24 h. All quinapril trilayer formulations showed zero-order and first-order for marketed product. The optimized formulation EQF16 was found to exhibit no interaction with excipients interpreted by FTIR and no significant changes were observed after loading for stability. In vivo studies conducted using optimized formulation EQF16 attained peak drug concentration (Tmax) of 4.0±0.06 and 1.0±0.03 h for the optimized and commercial formulations, respectively, while mean maximum drug concentration (Cmax) was 302.64±0.07 ng/mL and was significant (p<0.05) as compared to the quinapril marketed product formulation 358.78±0.75 ng/mL. Conclusion: Hence, quinapril was successfully formulated into trilayer matrix tablet and found to be stable

    IB Intensities in EC Decay of 125I

    Get PDF
    corecore