10,120 research outputs found
Recommended from our members
Deposition of Ti/TiC Composite Coatings on Implant Structures Using Laser Engineered Net Shaping
A new method of depositing hard and wear resistant composite coatings on metal-onmetal bearing surfaces of titanium implant structures is proposed and demonstrated. The method
consists of depositing a Ti/TiC composite coating (~ 2.5 mm thick) on titanium implant bearing
surfaces using Laser Engineered Net Shaping (LENS®). Defect-free composite coatings were
successfully produced at various amounts of the reinforcing TiC phase with excellent interfacial
characteristics using a mixture of commercially pure Ti and TiC powders. The coatings consisted
of a mixture of coarser unmelted/partially melted (UMC) TiC particles and finer, discreet
resolidified (RSC) TiC particles uniformly distributed in the titanium matrix. The amounts of
UMC and RSC were found to increase with increasing TiC content of the original powder
mixture. The coatings exhibited a high level of hardness, which increased with increasing TiC
content of the original powder mixture. Fractographic studies indicated that the coatings, even at
60 vol.% TiC, do not fail in a brittle manner. Various aspects of LENS® deposition of Ti/TiC
composite coatings are addressed and a preliminary understanding of structure-property-fracture
correlations is presented. The current work shows that the proposed approach to deposit
composite coatings using laser-based metal deposition processes is highly-effective, which can
be readily utilized on a commercial basis for manufacture of high-performance implants.Mechanical Engineerin
Recommended from our members
Process Parameters Optimization for Ultrasonically Consolidated Fiber-Reinforced Metal Matrix Composites
As an emerging rapid prototyping technology, Ultrasonic Consolidation (UC) has
been used to successfully fabricate metal matrix composites (MMC). The intent of this
study is to identify the optimum combination of processing parameters, including
oscillation amplitude, welding speed, normal force, operating temperature and fiber
orientation, for manufacture of long fiber-reinforced MMCs. The experiments were
designed using the Taguchi method, and an L25 orthogonal array was utilized to
determine the influences of each parameter. SiC fibers of 0.1mm diameter were
successfully embedded into an Al 3003 metal matrix. Two methods were employed to
characterize the bonding between the fiber and matrix material: optical/electron
microscopy and push-out tests monitored by an acoustic emission (AE) sensor. SEM
images and data from push-out tests were analyzed and optimum combinations of
parameters were achieved.Mechanical Engineerin
Recommended from our members
Multi-Material Ultrasonic Consolidation
Ultrasonic consolidation (UC) is a recently developed direct metal solid freeform
fabrication process. While the process has been well-demonstrated for part fabrication in Al alloy
3003 H18, including with intricate cooling channels, some of the potential strengths of the
process have not been fully exploited. One of them is its flexibility with build materials and the
other is its suitability for fabrication of multi-material and functionally graded material parts with
enhanced functional or mechanical properties. Capitalizing on these capabilities is critical for
broadening the application range and commercial utilization of the process. In the current work,
UC was used to investigate ultrasonic bonding of a broad range of engineering materials, which
included stainless steels, Ni-base alloys, brass, Al alloys, and Al alloy composites. UC multimaterial part fabrication was examined using Al alloy 3003 as the bulk part material and the
above mentioned materials as performance enhancement materials. Studies were focused on
microstructural aspects to evaluate interface characteristics between dissimilar material layers.
The results showed that most of these materials can be successfully bonded to Al alloy 3003 and
vice versa using the ultrasonic consolidation process. Bond formation and interface
characteristics between various material combinations are discussed based on oxide layer
characteristics, material properties, and others.Mechanical Engineerin
- …