132 research outputs found

    Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination

    Get PDF
    Among opportunistically pathogenic filamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafish embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efficiently phagocytized than A. niger. Though efficiently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these differences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, deficiency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover differences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections

    Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination

    Get PDF
    Among opportunistically pathogenic filamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafish embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efficiently phagocytized than A. niger. Though efficiently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these differences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, deficiency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover differences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections

    Methods for Investigating the UPR in Filamentous Fungi

    Get PDF
    Filamentous fungi have a high-capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases, the yields of nonfungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of slow or aberrant folding of heterologous proteins in the ER during the early stages of secretion within the endoplasmic reticulum, leading to stress responses in the host, including the unfolded protein response (UPR). Most of the key elements constituting the signal transduction pathway of the UPR in Saccharomyces cerevisiae have been identified in filamentous fungi, including the central activation mechanism of the pathway, that is, the stress-induced splicing of an unconventional (nonspliceosomal) intron in orthologs of the HAC1 mRNA. This splicing event relieves a translational block in the HAC1 mRNA, allowing for the translation of the bZIP transcription factor Hac1p that regulates the expression of UPR target genes. The UPR is involved in regulating the folding, yield, and delivery of secretory proteins and that has consequences for fungal lifestyles, including virulence and biotechnology. The recent releases of genome sequences of several species of filamentous fungi and the availability of DNA arrays, GeneChips, and deep sequencing methodologies have provided an unprecedented resource for exploring expression profiles in response to secretion stresses. Furthermore, genome-wide investigation of translation profiles through polysome analyses is possible, and here, we outline methods for the use of such techniques with filamentous fungi and, principally, Aspergillus niger. We also describe methods for the batch and controlled cultivation of A. niger and for the replacement and study of its hacA gene, which provides either a UPR-deficient strain or a constitutively activated UPR strain for comparative analysis with its wild type. Although we focus on A. niger, the utility of the hacA-deletion strategy is also described for use in investigating the virulence of the plant pathogen Alternaria brassicicola

    Toward microbial recycling and upcycling of plastics: prospects and challenges

    Get PDF
    Annually, 400 Mt of plastics are produced of which roughly 40% is discarded within a year. Current plastic waste management approaches focus on applying physical, thermal, and chemical treatments of plastic polymers. However, these methods have severe limitations leading to the loss of valuable materials and resources. Another major drawback is the rapid accumulation of plastics into the environment causing one of the biggest environmental threats of the twenty-first century. Therefore, to complement current plastic management approaches novel routes toward plastic degradation and upcycling need to be developed. Enzymatic degradation and conversion of plastics present a promising approach toward sustainable recycling of plastics and plastics building blocks. However, the quest for novel enzymes that efficiently operate in cost-effective, large-scale plastics degradation poses many challenges. To date, a wide range of experimental set-ups has been reported, in many cases lacking a detailed investigation of microbial species exhibiting plastics degrading properties as well as of their corresponding plastics degrading enzymes. The apparent lack of consistent approaches compromises the necessary discovery of a wide range of novel enzymes. In this review, we discuss prospects and possibilities for efficient enzymatic degradation, recycling, and upcycling of plastics, in correlation with their wide diversity and broad utilization. Current methods for the identification and optimization of plastics degrading enzymes are compared and discussed. We present a framework for a standardized workflow, allowing transparent discovery and optimization of novel enzymes for efficient and sustainable plastics degradation in the future.Microbial Biotechnolog

    Natural variation and the role of Zn2Cys6 transcription factors SdrA, WarA and WarB in sorbic acid resistance of aspergillus niger

    Get PDF
    Weak acids, such as sorbic acid, are used as chemical food preservatives by the industry. Fungiovercome this weak-acid stress by inducing cellular responses mediated by transcription factors. In ourresearch, a large-scale sorbic acid resistance screening was performed on 100 A. niger sensu stricto strains isolated fromvarious sources to study strain variability in sorbic acid resistance. Theminimal inhibitory concentration of undissociated (MICu) sorbic acid at pH = 4 in the MEB of the A. niger strains varies between 4.0 mMand 7.0 mM, with the average out of 100 strains being 4.8 0.8 mM, when scored after 28 days. MICu valueswere roughly 1mMlowerwhen tested in commercial ice tea. Genome sequencingof the most sorbic-acid-sensitive strain among the isolates revealed a premature stop codon inside thesorbic acid response regulator encoding gene sdrA. Repairing this missense mutation increased thesorbic acid resistance, showing that the sorbic-acid-sensitive phenotype of this strain is caused by theloss of SdrA function. To identify additional transcription factors involved in weak-acid resistance,a transcription factor knock-out library consisting of 240 A. niger deletion strains was screened. Thescreen identified a novel transcription factor,WarB, which contributes to the resistance against a broadrange of weak acids, including sorbic acid. The roles of SdrA,WarA andWarB in weak-acid resistance,including sorbic acid, were compared by creating single, double and the triple knock-out strains. Allthree transcription factors were found to have an additive effect on the sorbic acid stress response.Microbial Biotechnolog

    Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination

    Get PDF
    Among opportunistically pathogenic filamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafish embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efficiently phagocytized than A. niger. Though efficiently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these differences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, deficiency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover differences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections.Microbial Biotechnolog

    Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1–2 locus of Aspergillus niger

    Get PDF
    BackgroundAspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65.ResultsThe genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1–1 locus of ATCC 1015 compared to the MAT1–2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1–1 locus and the other half a MAT1–2 locus. The genomic organization of the MAT1–2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1–1 locus is flipped in all sequenced strains of A. niger.ConclusionsThis study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1–1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual.Microbial Biotechnolog
    corecore