16 research outputs found

    Slowly synchronizing automata and digraphs

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. These automata are closely related to primitive digraphs with large exponent.Comment: 13 pages, 5 figure

    The Maximal Denumerant of a Numerical Semigroup

    Full text link
    Given a numerical semigroup S = and n in S, we consider the factorization n = c_0 a_0 + c_1 a_1 + ... + c_t a_t where c_i >= 0. Such a factorization is maximal if c_0 + c_1 + ... + c_t is a maximum over all such factorizations of n. We provide an algorithm for computing the maximum number of maximal factorizations possible for an element in S, which is called the maximal denumerant of S. We also consider various cases that have connections to the Cohen-Macualay and Gorenstein properties of associated graded rings for which this algorithm simplifies.Comment: 13 Page

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    On Counting the k-face Cells of Cyclic Arrangements

    Get PDF
    In this paper, we compute the exact number of k-face cells of the cyclic arrangements which are the dual to the well-known cyclic polytopes. The proof uses the combinatorial interpretation of arrangements in terms of oriented matroids

    Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf’s Theorem

    Full text link
    peer reviewedIn this paper we study a generalization of the classical fesibility problem in integer linear programming, where an ILP needs to have a prescribed number of solutions to be considered solved. We first provide a generalization of the famous Doignon-Bell-Scarf theorem: Given an integer k, we prove that there exists a constant c(k, n), depending only on the dimension n and k, such that if a polyhedron {x : Ax ≤ b} contains exactly k integer solutions, then there exists a subset of the rows of cardinality no more than c(k,n), defining a polyhedron that contains exactly the same k integer solutions. The second contribution of the article presents a structure theory that characterizes precisely the set Sg≥k (A) of all vectors b such that the problem Ax = b, x ≥ 0, x ∈ Zn , has at least k-solutions. We demonstrate that this set is finitely generated, a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computation. Similar results can be derived for those right-hand-side vectors that have exactly k solutions or fewer than k solutions. Finally we show that, when n, k are fixed natural numbers, one can compute in polynomial time an encoding of Sg≥k(A) as a generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors that have exactly k solutions (similarly for at least k or less than k solutions). Under the same assumptions we prove that the k-Frobenius number can be computed in polynomial time
    corecore