121 research outputs found

    Genetics and Osteoporosis

    Get PDF

    Medical management of patients after atypical femur fractures: a systematic review and recommendations from the European Calcified Tissue Society

    Get PDF
    Context Atypical femur fractures (AFFs) are serious adverse events associated with bisphosphonates and often show poor healing. Evidence acquisition We performed a systematic review to evaluate effects of teriparatide, raloxifene, and denosumab on healing and occurrence of AFF. Evidence synthesis We retrieved 910 references and reviewed 67 papers, including 31 case reports, 9 retrospective and 3 prospective studies on teriparatide. There were no RCTs. We pooled data on fracture union (n = 98 AFFs on teriparatide) and found that radiological healing occurred within 6 months of teriparatide in 13 of 30 (43%) conservatively managed incomplete AFFs, 9 of 10 (90%) incomplete AFFs with surgical intervention, and 44 of 58 (75%) complete AFFs. In 9 of 30 (30%) nonoperated incomplete AFFs, no union was achieved after 12 months and 4 (13%) fractures became complete on teriparatide. Eight patients had new AFFs during or after teriparatide. AFF on denosumab was reported in 22 patients, including 11 patients treated for bone metastases and 8 without bisphosphonate exposure. Denosumab after AFF was associated with recurrent incomplete AFFs in 1 patient and 2 patients of contralateral complete AFF. Eight patients had used raloxifene before AFF occurred, including 1 bisphosphonate-naĂŻve patient. Conclusions There is no evidence-based indication in patients with AFF for teriparatide apart from reducing the risk of typical fragility fractures, although observational data suggest that teriparatide might result in faster healing of surgically treated AFFs. Awaiting further evidence, we formulate recommendations for treatment after an AFF based on expert opinion

    Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women

    Get PDF
    BACKGROUND: Osteoporosis is a common disorder with a strong genetic component. One way in which the genetic component could be expressed is through polymorphism of COLIA1, the gene for collagen type Ialpha1, a bone-matrix protein. METHODS: We determined the COLIA1 genotypes SS, Ss, and ss in a population-based sample of 177

    Protocol of a randomised trial of teriparatide followed by zoledronic acid to reduce fracture risk in adults with osteogenesis imperfecta

    Get PDF
    Introduction: Osteogenesis imperfecta (OI) is a rare genetic disease associated with multiple fractures throughout life. It is often treated with osteoporosis medications but their effectiveness at preventing fractures is unknown. The Treatment of Osteogenesis Imperfecta with Parathyroid Hormone and Zoledronic Acid trial will determine if therapy with teriparatide (TPTD) followed by zoledronic acid (ZA) can reduce the risk of clinical fractures in OI. Methods and analysis: Individuals aged ≄18 years with a clinical diagnosis of OI are eligible to take part. At baseline, participants will undergo a spine X-ray, and have bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) at the spine and hip. Information on previous fractures and previous bone targeted treatments will be collected. Questionnaires will be completed to assess pain and other aspects of health-related quality of life (HRQoL). Participants will be randomised to receive a 2-year course of TPTD injections 20 ”g daily followed by a single intravenous infusion of 5 mg ZA, or to receive standard care, which will exclude the use of bone anabolic drugs. Participants will be followed up annually, have a repeat DXA at 2 years and at the end of study. Spine X-rays will be repeated at the end of study. The duration of follow-up will range between 2 and 8 years. The primary endpoint will be new clinical fractures confirmed by X-ray or other imaging. Secondary endpoints will include participant reported fractures, BMD and changes in pain and HRQoL. Ethics and dissemination: The study received ethical approval in December 2016. Following completion of the trial, a manuscript will be submitted to a peer-reviewed journal. The results will inform clinical practice by determining if TPTD/ZA can reduce the risk of fractures in OI compared with standard care. Trial registration number: ISRCTN15313991

    The Effect of Nutrient Intake on Bone Mineral Status in Young Adults: The Northern Ireland Young Hearts Project

    Get PDF
    Aunque hemos hablado de ello, no estarĂĄ de mĂĄs recordar que uno de los mejores blogs de historia es el de la Historical Society. Este reciĂ©n empezado año lo han inaugurado con un repaso al nĂșmero que su revista, Historically Speaking, publicĂł a principios de 2009. Ha pasado cierto tiempo, es evidente, pero conviene detenerse en su contenido, porque no es habitual: la forma en la que escribimos  la historia. En efecto, la citada publicaciĂłn dedicĂł una mesa redonda a debatir sobre "Teaching the..

    The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice

    Get PDF
    SummaryObjectiveCannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice.MethodsWe analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2−/−) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA).ResultsOsteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2−/− compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2−/− mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2−/− mice produced less proteoglycans in vitro than wild type chondrocytes.ConclusionThese studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted

    Role of the microbiome in regulating bone metabolism and susceptibility to osteoporosis

    Get PDF
    The human microbiota functions at the interface between diet, medication-use, lifestyle, host immune development and health. It is therefore closely aligned with many of the recognised modifiable factors that influence bone mass accrual in the young, and bone maintenance and skeletal decline in older populations. While understanding of the relationship between micro-organisms and bone health is still in its infancy, two decades of broader microbiome research and discovery supports a role of the human gut microbiome in the regulation of bone metabolism and pathogenesis of osteoporosis as well as its prevention and treatment. Pre-clinical research has demonstrated biological interactions between the microbiome and bone metabolism. Furthermore, observational studies and randomized clinical trials have indicated that therapeutic manipulation of the microbiota by oral administration of probiotics may influence bone turnover and prevent bone loss in humans. In this paper, we summarize the content, discussion and conclusions of a workshop held by the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society in October, 2020. We provide a detailed review of the literature examining the relationship between the microbiota and bone health in animal models and in humans, as well as formulating the agenda for key research priorities required to advance this field. We also underscore the potential pitfalls in this research field that should be avoided and provide methodological recommendations to facilitate bridging the gap from promising concept to a potential cause and intervention target for osteoporosis

    Defective removal of ribonucleotides from DNA promotes systemic autoimmunity

    Get PDF
    Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-GoutiĂšres syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity

    No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls.

    Get PDF
    OBJECTIVES: Osteoarthritis (OA) has a complex aetiology with a strong genetic component. Genome-wide association studies implicate several nuclear genes in the aetiology, but a major component of the heritability has yet to be defined at the molecular level. Initial studies implicate maternally inherited variants of mitochondrial DNA (mtDNA) in subgroups of patients with OA based on gender and specific joint involvement, but these findings have not been replicated. METHODS: The authors studied 138 maternally inherited mtDNA variants genotyped in a two cohort genetic association study across a total of 7393 OA cases from the arcOGEN consortium and 5122 controls genotyped in the Wellcome Trust Case Control consortium 2 study. RESULTS: Following data quality control we examined 48 mtDNA variants that were common in cohort 1 and cohort 2, and found no association with OA. None of the phenotypic subgroups previously associated with mtDNA haplogroups were associated in this study. CONCLUSIONS: We were not able to replicate previously published findings in the largest mtDNA association study to date. The evidence linking OA to mtDNA is not compelling at present
    • 

    corecore