43 research outputs found

    When Two Is Better Than One

    Get PDF
    Gene duplication and divergence has long been considered an important route to adaptation and phenotypic evolution. Reporting in Nature, Hittinger and Carroll (2007) provide the first clear example of adaptations in both regulatory regions and protein-coding regions after gene duplication. This combination of evolutionary changes appears to have resolved an adaptive conflict, leading to increased organismal fitness

    Whole-Genome Positive Selection and Habitat-Driven Evolution in a Shallow and a Deep-Sea Urchin

    Get PDF
    Comparisons of genomic sequence between divergent species can provide insight into the action of natural selection across many distinct classes of proteins. Here, we examine the extent of positive selection as a function of tissue-specific and stage-specific gene expression in two closely-related sea urchins, the shallow-water Strongylocentrotus purpuratus and the deep-sea Allocentrotus fragilis, which have diverged greatly in their adult but not larval habitats. Genes that are expressed specifically in adult somatic tissue have significantly higher dN/dS ratios than the genome-wide average, whereas those in larvae are indistinguishable from the genome-wide average. Testis-specific genes have the highest dN/dS values, whereas ovary-specific have the lowest. Branch-site models involving the outgroup S. franciscanus indicate greater selection (ωFG) along the A. fragilis branch than along the S. purpuratus branch. The A. fragilis branch also shows a higher proportion of genes under positive selection, including those involved in skeletal development, endocytosis, and sulfur metabolism. Both lineages are approximately equal in enrichment for positive selection of genes involved in immunity, development, and cell–cell communication. The branch-site models further suggest that adult-specific genes have experienced greater positive selection than those expressed in larvae and that ovary-specific genes are more conserved (i.e., experienced greater negative selection) than those expressed specifically in adult somatic tissues and testis. Our results chart the patterns of protein change that have occurred after habitat divergence in these two species and show that the developmental or functional context in which a gene acts can play an important role in how divergent species adapt to new environments

    Mutation Rate and the Cost of Complexity

    No full text

    Gene expression and adaptive noncoding changes during human evolution

    No full text
    Abstract Background Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Results Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Conclusions Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function

    Consequences of recurrent gene flow from crops to wild relatives.

    No full text
    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely

    Contrasts between adaptive coding and noncoding changes during human evolution

    No full text
    Changes in non–protein-coding regulatory DNA sequences have been proposed to play distinctive roles in adaptive evolution. We analyzed correlations between gene functions and evidence for positive selection in a common statistical framework across several large surveys of coding and noncoding sequences throughout the human genome. Strong correlations with both classifications in gene ontologies and measurements of gene expression indicate that neural development and function have adapted mainly through noncoding changes. In contrast, adaptation via coding changes is dominated by immunity, olfaction, and male reproduction. Genes with highly tissue-specific expression have undergone more adaptive coding changes, suggesting that pleiotropic constraints inhibit such changes in broadly expressed genes. In contrast, adaptive noncoding changes do not exhibit this pattern. Our findings underscore the probable importance of noncoding changes in the evolution of human traits, particularly cognitive traits
    corecore