6 research outputs found

    Cytotoxicity of flavonoid glycosides, flavonoids and phenolic acids from Inula oculus-christi on mammalian cell lines

    No full text
    Herbs of the genus Inula are well known in traditional medicine. Their extracts are used as expectorants, antitussives, bactericides as well as for the treatment of lung inflammation and have shown to possess anti-inflammatory and secretolytic activity. Experimental research findings indicate the anti-tumor effect of certain components of extracts from Inula cappa and Inula britannicа and those from Inula racemosa have antimicrobial and antidiabetic activity. We have directed our efforts on investigating the effects of different extracts from Inula oculus-christi, enriched with certain groups of biologically active substances - flavonoid glycosides (A), phenolic acids (B), flavonoid glycosides and phenolic acids (C), flavonoids and phenolic acids (D). The effect of these extracts on normal (MDCK ІІ and RPE1) and carcinoma cell lines (A549 and HepG2) was evaluated. We have performed cytotoxicity study (crystal violet assay) as well as morphological analysis of changes induced by the extracts. Among the tumor cell lines HepG2 show greater sensitivity. Surprisingly extract C has no significant influence on both cancer cell lines

    Myconoside Affects the Viability of Polarized Epithelial MDCKII Cell Line by Interacting with the Plasma Membrane and the Apical Junctional Complexes

    No full text
    The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine

    Miscibility of hBest1 and sphingomyelin in surface films – a prerequisite for interaction with membrane domains

    No full text
    Human bestrophin-1 (hBest1) is a transmembrane Ca2+- dependent anion channel, associated with the transport of Cl−, HCO3- ions, γ-aminobutiric acid (GABA), glutamate (Glu), and regulation of retinal homeostasis. Its mutant forms cause retinal degenerative diseases, defined as Bestrophinopathies. Using both physicochemical - surface pressure/mean molecular area (π/A) isotherms, hysteresis, compressibility moduli of hBest1/sphingomyelin (SM) monolayers, Brewster angle microscopy (BAM) studies, and biological approaches - detergent membrane fractionation, Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) and immunofluorescence staining of stably transfected MDCK-hBest1 and MDCK II cells, we report: 1) Ca2+, Glu and GABA interact with binary hBest1/SM monolayers at 35 °C, resulting in changes in hBest1 surface conformation, structure, self-organization and surface dynamics. The process of mixing in hBest1/SM monolayers is spontaneous and the effect of protein on binary films was defined as “fluidizing”, hindering the phase-transition of monolayer from liquid-expanded to intermediate (LE-M) state; 2) in stably transfected MDCK-hBest1 cells, bestrophin-1 was distributed between detergent resistant (DRM) and detergent-soluble membranes (DSM) - up to 30 % and 70 %, respectively; in alive cells, hBest1 was visualized in both liquid-ordered (Lo) and liquid-disordered (Ld) fractions, quantifying protein association up to 35 % and 65 % with Lo and Ld. Our results indicate that the spontaneous miscibility of hBest1 and SM is a prerequisite to diverse protein interactions with membrane domains, different structural conformations and biological functions

    Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from <i>Rosa damascena</i> Mill

    No full text
    Dry rose extract (DRE) obtained industrially by aqueous ethanol extraction from R. damascena flowers and its phenolic-enriched fraction, obtained by re-extraction with ethyl acetate (EAE) were the subject of this study. 1H NMR of DRE allowed the identification and quantitation of fructose and glucose, while the combined use of HPLC-DAD-ESIMS and HPLC-HRMS showed the presence of 14 kaempferol glycosides, 12 quercetin glycosides, 4 phenolic acids and their esters, 4 galloyl glycosides, 7 ellagitannins, and quinic acid. In addition, the structures of 13 of the flavonoid glycosides were further confirmed by NMR. EAE was found to be richer in TPC and TFC and showed better antioxidant activity (DPPH, ABTS, and FRAP) compared to DRE. Both extracts displayed significant activity against Propionibacterium acnes, Staphylococcus aureus, and S. epidermidis, but showed no activity against Candida albicans. Toxicity tests on normal human skin fibroblasts revealed low toxicity for both extracts with stronger effects observed at 24 hours of treatment that were compensated for over the following two days. Human hepatocarcinoma (HepG2) cells exhibited an opposite response after treatment with a concentration above 350 µg/mL for EAE and 500 µg/mL for DRE, showing increased toxicity after the third day of treatment. Lower concentrations were non-toxic and did not significantly affect the cell cycle parameters of either of the cell lines
    corecore