10 research outputs found

    Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 during Discharge

    Get PDF
    The understanding of dynamic processes in Li-metal batteries is an important consideration to enable the full capacity of cells to be utilised. These processes, however, are generally not directly observable using X-ray techniques due to the low attenuation of Li; and are challenging to visualise using neutron imaging due to the low temporal resolution of the technique. In this work, complementary X-ray and neutron imaging are combined to track the dynamics of Li within a primary Li/SOCl2 cell. The temporal challenges posed by neutron imaging are overcome using the golden ratio imaging method which enables the identification of Li diffusion in operando. This combination of techniques has enabled an improved understanding of the processes which limit rate performance in Li/SOCl2 cells and may be applied beyond this chemistry to other Li-metal cells

    Multi-Dimensional Characterization of Battery Materials

    Get PDF
    Demand for low carbon energy storage has highlighted the importance of imaging techniques for the characterization of electrode microstructures to determine key parameters associated with battery manufacture, operation, degradation, and failure both for next generation lithium and other novel battery systems. Here, recent progress and literature highlights from magnetic resonance, neutron, X-ray, focused ion beam, scanning and transmission electron microscopy are summarized. Two major trends are identified: First, the use of multi-modal microscopy in a correlative fashion, providing contrast modes spanning length- and time-scales, and second, the application of machine learning to guide data collection and analysis, recognizing the role of these tools in evaluating large data streams from increasingly sophisticated imaging experiments

    Advanced Imaging of Electrochemical Devices – Imaging of Lithium Batteries and Fuel Cells

    Get PDF
    Batteries and fuel cells have already shown high potential across a diverse range of applications such as automotive power trains, space propulsion and medical implants. However, further developments are still required with regards to reliability, efficiency and safety. For that, multimodal and complementary characterisation methods that combine common investigation tools may allow one technique, e.g. X-ray, to overcome the drawbacks of another, e.g. neutron, and vice versa. For instance, recent developments in innovative neutron imaging techniques, which is highly sensitive to lithium and hydrogen, are able to compliment X-ray methods that cannot easily detect such light elements, closing the gaps in information. This thesis utilises the latest neutron and X-ray techniques to examine commercial and lab-made lithium metal, Li-ion battery and fuel cells. Four-dimensional (4D) high-resolved neutron and X-ray computed tomography (CT) allow the quantitative determination of the lithium transport inside commercial Li/SOCl2 cells, and the detection of the electrolyte consumption and degradation processes which affect the cell capacity. High throughput X-ray CT has enabled the identification of mechanical degradation processes in commercial Li/MnO2 Li-ion primary batteries. Complementary neutron CT has identified the lithium diffusion process and electrode wetting by electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and detect minor fluctuations which are difficult to observe using conventional three-dimensional (3D) rendering tools. High-speed operando CT has shown temporal resolved water evolution in the electrode flow-fields and the membrane electrode assembly of polymer electrolyte fuel cells in 3D for the first time. This allow a quantitative comparison between different operation modes and cell designs by the water management. 4D neutron Bragg edge imaging has shown their potential to characterise the different lithiation phases spatially resolved in novel directional ice templated graphite electrodes. Finally, 3D Bragg Ptychography is utilised to visualise the nano-metre layered crystal structure of small graphite flakes used as active electrode material in Li-ion batteries

    Neutron imaging of lithium batteries

    Get PDF
    Advanced batteries are critical to achieving net zero and are proposed within decarbonization strategies for transport and grid-scale applications, alongside their ubiquitous application in consumer devices. Immense progress has been made in lithium battery technology in recent years, but significant challenges remain and new development strategies are required to improve performance, fully exploit power density capacities, utilize sustainable resources, and lower production costs. Suitable characterization techniques are crucial for understanding, inter alia, three-dimensional (3D) diffusion processes and formation of passivation layers or dendrites, which can lead to drastic capacity reduction and potentially to hazardous short circuiting. Studies of such phenomena typically utilize 2D or 3D imaging techniques, providing locally resolved information. 3D X-ray imaging is a widely used standard method, while time-lapse (4D) tomography is increasingly required for understanding the processes and transformations in an operational battery. Neutron imaging overcomes some of the limitations of X-ray tomography for battery studies. Notably, the high visibility of neutrons for light-Z elements, in particular hydrogen and lithium, enables the direct observation of lithium diffusion, electrolyte consumption, and gas formation in lithium batteries. Neutron imaging as a non-destructive analytical tool has been steadily growing in many disciplines as a result of improvements to neutron detectors and imaging facilities, providing increasingly higher spatial and temporal resolutions. Further, ongoing developments in diffraction imaging for mapping the structural and microstructural properties of battery components make the use of neutrons increasingly attractive. Here, we provide an overview of neutron imaging techniques, generally outlining advances and limitations for studies on batteries and reviewing imaging studies of lithium batteries. We conclude with an outlook on development methods in the field and discuss their potential and significance for future battery research

    Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    No full text
    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    AbstractLaser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot.</jats:p

    HOT-300 - a multidisciplinary technology approach targeting microelectronic systems at 300 °C operating temperature

    No full text
    Several applications in the fields of industrial sensors and power electronics are creating a demand for high operating temperature of 300 °C or even higher. Due to the increased temperature range new potential defect risks and material interactions have to be considered. As a consequence, innovation in semiconductor, devices and packaging technologies has to be accompanied by dedicated research of the reliability properties. Therefore various investigations on realizing high temperature capable electronic systems have shown that a multidisciplinary approach is necessary to achieve highly reliable solutions. In the course of the multi-institute Fraunhofer internal research program HOT-300 several aspects of microelectronic systems running up to 300 °C have been investigated like SOI-CMOS technology and circuits, silicon capacitor devices, a capacitive micromachined ultrasonic transducer (CMUT), ceramic substrates and different packaging and assembly techniques. A ceramic molded package has been developed. Die attach on different leadframe alloys were investigated using silver sintering and transient liquid phase bonding (TLPB). Copper and gold wire bonding was studied and used to connect the chips with the package terminals. Investigations in flip chip technology were performed using Au/Sn and Cu/Sn solder bumps for transient liquid phase bonding. High operating temperatures result in new temperature driven mechanisms of degradation and material interactions. It is quite possible that the thermomechanical reliability is a limiting factor for the technology to be developed. Therefore investigations on material diagnostics, reliability testing and modeling have been included in the project, complementing the technology developments

    Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science

    No full text
    The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example
    corecore