131 research outputs found
Adenosine receptor 2B activity promotes autonomous growth, migration as well as vascularization of head and neck squamous cell carcinoma cells
Adenosine is a signaling molecule that exerts dual effects on tumor growth: while it inhibits immune cell function and thereby prevents surveillance by the immune system, it influences tumorigenesis directly via activation of adenosine receptors on tumor cells at the same time. However, the adenosine-mediated mechanisms affecting oncogenic processes particularly in head and neck squamous cell carcinomas (HNSCC) are not fully understood. Here, we investigated the role of adenosine receptor activity on HNSCC-derived cell lines. Targeting the adenosine receptor A2B (ADORA2B) on these cells with the inverse agonist/antagonist PSB-603 leads to inhibition of cell proliferation, transmigration as well as VEGFA secretion in vitro. At the molecular level, these effects were associated with cell cycle arrest as well as the induction of the apoptotic pathway. In addition, shRNA-mediated downmodulation of ADORA2B expression caused decreased proliferation. Moreover, in in vivo xenograft experiments, chemical and genetic abrogation of ADORA2B activity impaired tumor growth associated with decreased tumor vascularization. Together, our findings characterize ADORA2B as a crucial player in the maintenance of HNSCC and, therefore, as a potential therapeutic target for HNSCC treatment
Target heterogeneity in oncology : the best predictor for differential response to radioligand therapy in neuroendocrine tumors and prostate cancer
Tumor or target heterogeneity (TH) implies presence of variable cellular populations having
different genomic characteristics within the same tumor, or in different tumor sites of the same
patient. The challenge is to identify this heterogeneity, as it has emerged as the most common cause
of ‘treatment resistance’, to current therapeutic agents. We have focused our discussion on ‘Prostate
Cancer’ and ‘Neuroendocrine Tumors’, and looked at the established methods for demonstrating
heterogeneity, each with its advantages and drawbacks. Also, the available theranostic radiotracers
targeting PSMA and somatostatin receptors combined with targeted systemic agents, have been
described. Lu-177 labeled PSMA and DOTATATE are the ‘standard of care’ radionuclide therapeutic
tracers for management of progressive treatment-resistant prostate cancer and NET. These approved
therapies have shown reasonable benefit in treatment outcome, with improvement in quality of
life parameters. Various biomarkers and predictors of response to radionuclide therapies targeting
TH which are currently available and those which can be explored have been elaborated in details.
Imaging-based features using artificial intelligence (AI) need to be developed to further predict the
presence of TH. Also, novel theranostic tools binding to newer targets on surface of cancer cell should
be explored to overcome the treatment resistance to current treatment regimens.http://www.mdpi.com/journal/cancerspm2021Nuclear Medicin
Increasing mean age of head and neck cancer patients at a German tertiary referral center
Background: The impact of demographic change on the age at diagnosis in German head and neck cancer (HNC) patients is unclear. Here we present an evaluation of aging trends in HNC at a tertiary referral center. Methods: Retrospective cohort study on aging trends at the initial diagnosis of newly diagnosed patients with HNC between 2004 and 2018 at the head and neck cancer center Ulm in relation to demographic data of the catchment area. Results: The study population consisted of 2450 individuals diagnosed with HNC with a mean age of 62.84 (±11.67) years. We observed a significant increase in annual incidence rates and mean age over time. Mean age among HNC patients increased significantly more than among the population in the catchment area. Whereas the incidence rate of patients <50 years did not change, the incidence of HNC patients aged ≥70 years increased the most. The mean patient age in the main tumor sites increased significantly. Surprisingly, HPV-positive patients were not younger than HPV-negative patients, but showed a non-significant trend towards a higher mean age (63.0 vs. 60.7 years). Conclusions: Increasing incidence rates in older patients pose a challenge for health care systems. A nationwide study is needed to assess the dynamics and impact of aging on the incidence of HNC
Patterns of antibody responses to nonviral cancer antigens in head and neck squamous cell carcinoma patients differ by human papillomavirus status
There have been hints that nonviral cancer antigens are differentially expressed in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC). Antibody responses (AR) to cancer antigens may be used to indirectly determine cancer antigen expression in the tumor using a noninvasive and tissue-saving liquid biopsy. Here, we set out to characterize AR to a panel of nonviral cancer antigens in HPV-positive and HPV-negative HNSCC patients. A fluorescent microbead multiplex serology to 29 cancer antigens (16 cancer-testis antigens, 5 cancer-retina antigens and 8 oncogenes) and 29 HPV-antigens was performed in 382 HNSCC patients from five independent cohorts (153 HPV-positive and 209 HPV-negative). AR to any of the cancer antigens were found in 272/382 patients (72%). The ten most frequent AR were CT47, cTAGE5a, c-myc, LAGE-1, MAGE-A1, -A3, -A4, NY-ESO-1, SpanX-a1 and p53. AR to MAGE-A3, MAGE-A9 and p53 were found at significantly different prevalences by HPV status. An analysis of AR mean fluorescent intensity values uncovered remarkably different AR clusters by HPV status. To identify optimal antigen selections covering a maximum of patients with ≤10 AR, multiobjective optimization revealed distinct antigen selections by HPV status. We identified that AR to nonviral antigens differ by HPV status indicating differential antigen expression. Multiplex serology may be used to characterize antigen expression using serum or plasma as a tissue-sparing liquid biopsy. Cancer antigen panels should address the distinct antigen repertoire of HPV-positive and HPV-negative HNSCC
Development, testing and validation of a targeted NGS-panel for the detection of actionable mutations in lung cancer (NSCLC) using anchored multiplex PCR technology in a multicentric setting
Lung cancer is a paradigm for a genetically driven tumor. A variety of drugs were developed targeting specific biomarkers requiring testing for tumor genetic alterations in relevant biomarkers. Different next-generation sequencing technologies are available for library generation: 1) anchored multiplex-, 2) amplicon based- and 3) hybrid capture-based-PCR. Anchored multiplex PCR-based sequencing was investigated for routine molecular testing within the national Network Genomic Medicine Lung Cancer (nNGM). Four centers applied the anchored multiplex ArcherDX-Variantplex nNGMv2 panel to re-analyze samples pre-tested during routine diagnostics. Data analyses were performed by each center and compiled centrally according to study design. Pre-defined standards were utilized, and panel sensitivity was determined by dilution experiments. nNGMv2 panel sequencing was successful in 98.9% of the samples (N = 90). With default filter settings, all but two potential MET exon 14 skipping variants were identified at similar allele frequencies. Both MET variants were found with an adapted calling filter. Three additional variants (KEAP1, STK11, TP53) were called that were not identified in pre-testing analyses. Only total DNA amount but not a qPCR-based DNA quality score correlated with average coverage. Analysis was successful with a DNA input as low as 6.25 ng. Anchored multiplex PCR-based sequencing (nNGMv2) and a sophisticated user-friendly Archer-Analysis pipeline is a robust and specific technology to detect tumor genetic mutations for precision medicine of lung cancer patients
Benchmarking whole exome sequencing in the German Network for Personalized Medicine
Introduction
Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis.
Methods
To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability.
Results
The mean positive percentage agreement (PPA) of somatic variant calling was 76% and positive predictive value (PPV) 89% compared a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did not increase considerably using the central pipeline and was hence attributed to wet-lab differences.
Conclusion
Continuous optimization of bioinformatic workflows and participating in round robin tests are recommend
Spatial distribution of immune checkpoint proteins in histological subtypes of lung adenocarcinoma
The most prevalent histological type of non-small cell lung cancer (NSCLC) is adenocarcinoma. The WHO classifies this tumor into subtypes according to the predominant growth pattern such as lepidic, acinar, papillary, solid or micropapillary, each harboring specific molecular features. NSCLC adenocarcinoma heterogeneity is discussed to be a reason for therapy failure using targeted therapy or immune checkpoint inhibitors. For successful therapy of immune checkpoint inhibitors the expression and distribution of the involved immune checkpoint proteins is essential. Therefore, we aimed to investigate the distribution of five prominent immune checkpoint proteins in regard of the histological growth patterns of lung adenocarcinoma. We performed immunohistochemical staining of 84 tumor segments from 22 resected tumor samples to evaluate the expression of PD-L1, PD-1, Nectin-2, PVR, and TIGIT in distinct growth patterns of lung adenocarcinoma. We determined a distinct heterogeneity between and within different tumor segments regarding morphological growth patterns. Furthermore, expression of immune checkpoint proteins varied between different growth pattern areas as well as within one distinct growth pattern. Expression of PVR was significantly higher in solid compared to acinar growth pattern (p= 0.00736). Of note, we detected TIGIT not only on tumor infiltrating lymphocytes but also on tumor cells, whereas non-neoplastic lung tissue was consistently TIGIT-negative. The immune checkpoint protein distribution in histologic subtypes of pulmonary adenocarcinoma displays an considerable intra- and intertumoral heterogeneity implying the requirement of either a multiregion or an adjusted analysis when determining the expression status of PD-1:PD-L1 and the TIGIT:PVR/Nectin-2 checkpoint proteins as predictive markers
Heterogeneous expression of predictive biomarkers PD-L1 and TIGIT in non-mucinous lung adenocarcinoma and corresponding lymph node metastasis: A challenge for clinical biomarker testing
The use of immune checkpoint inhibitors (ICI) targeting the PD-L1:PD1 interaction revolutionized tumor treatment by re-activating the anti-tumoral capacity of the immune system. Assessment of tumor mutational burden, microsatellite instability, or expression of the surface marker PD-L1 have been used to predict individual response to ICI therapy. However, the predicted response does not always correspond to the actual therapy outcome. We hypothesize that tumor heterogeneity might be a major cause of this inconsistency. In this respect we recently demonstrated that PD-L1 shows heterogenous expression in the different growth patterns of non-small cell lung cancer (NSCLC) - lepidic, acinar, papillary, micropapillary and solid. Furthermore, additional inhibitory receptors, like T cell immunoglobulin and ITIM domain (TIGIT), appear to be heterogeneously expressed and affect the outcome of anti-PD-L1 treatment. Given this heterogeneity in the primary tumor, we set out to analyze the situation in corresponding lymph node metastases, since these are often used to obtain biopsy material for tumor diagnosis, staging and molecular analysis. Again, we observed heterogeneous expression of PD-1, PD-L1, TIGIT, Nectin-2 and PVR in relation to different regions and growth pattern distribution that varied between the primary tumor and their metastases. Together, our study underscores the complex situation regarding the heterogeneity of NSCLC samples and suggest that the analysis of a small biopsy from lymph node metastases may not be sufficient to ensure a reliable prediction of ICI therapy success
GSK3β modulates NF-κB activation and RelB degradation through site-specific phosphorylation of BCL10
Abstract Glycogen synthase kinase 3β (GSK3β) is a ubiquitously expressed serine/threonine kinase involved in the regulation of various cellular functions, such as energy homoeostasis, cell growth and developmental processes. More recently, GSK3β has been identified as a part of a protein complex involved in the regulation of the CARMA1-BCL10-MALT1 complex (CBM complex) formation, which is a key signalling event upon antigen receptor engagement of B and T cells, required for the activation of the NF-κB and JNK pathways. However, conflicting reports have been published regarding the role of GSK3β for the activation of the NF-κB signalling pathways. Therefore, we aimed to determine the impact of GSK3β on the NF-κB signalling induced upon T cell activation. Blocking GSK3β by either pharmacologic inhibitors (SB216763 and SB415286) or by RNAi caused a reduced proteolysis of the MALT1 targets CYLD1, BCL10 and RelB as well as diminished IκBα degradation, NF-κB DNA binding and NF-κB activity. This negative effect on NF-κB appears to be due to a diminished CBM complex formation caused by a reduced BCL10 phosphorylation. Taken together, we provide here evidence for a novel regulatory mechanism by which GSK3β affects NF-κB signalling in activated T cells
- …