282 research outputs found

    SU(3) breaking in hyperon transition vector form factors

    Get PDF
    We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p4)\mathcal{O}(p^4) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q2=−(MB1−MB2)2Q^2=-(M_{B_1}-M_{B_2})^2, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ−→n\Sigma^-\rightarrow n and Ξ0→Σ+\Xi^0\rightarrow \Sigma^+ transition form factors. Hence we determine lattice-informed values of f1f_1 at the physical point. This work constitutes progress towards the precise determination of ∣Vus∣|V_{us}| from hyperon semileptonic decays

    Quark structure from the lattice Operator Product Expansion

    Get PDF
    We have reported elsewhere in this conference on our continuing project to determine non-perturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing.Comment: 7 pages, 3 figures. Talk given at the XXVII International Symposium on Lattice Field Theory, July 26-31 2009, Peking University, Beijing, Chin

    The operator product expansion on the lattice

    Get PDF
    We investigate the Operator Product Expansion (OPE) on the lattice by directly measuring the product (where J is the vector current) and comparing it with the expectation values of bilinear operators. This will determine the Wilson coefficients in the OPE from lattice data, and so give an alternative to the conventional methods of renormalising lattice structure function calculations. It could also give us access to higher twist quantities such as the longitudinal structure function F_L = F_2 - 2 x F_1. We use overlap fermions because of their improved chiral properties, which reduces the number of possible operator mixing coefficients.Comment: 7 pages, 4 postscript figures. Contribution to Lattice 2007, Regensbur

    Nucleon structure in terms of OPE with non-perturbative Wilson coefficients

    Get PDF
    Lattice calculations could boost our understanding of Deep Inelastic Scattering by evaluating moments of the Nucleon Structure Functions. To this end we study the product of electromagnetic currents between quark states. The Operator Product Expansion (OPE) decomposes it into matrix elements of local operators (depending on the quark momenta) and Wilson coefficients (as functions of the larger photon momenta). For consistency with the matrix elements, we evaluate a set of Wilson coefficients non-perturbatively, based on propagators for numerous momentum sources, on a 24^3 x 48 lattice. The use of overlap quarks suppresses unwanted operator mixing and lattice artifacts. Results for the leading Wilson coefficients are extracted by means of Singular Value Decomposition.Comment: 7 pages, 3 figures, contribution to the XXVI International Symposium on Lattice Field Theory, July 14-19 Williamsburg, Virginia, US

    Results from 2+1 flavours of SLiNC fermions

    Get PDF
    QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum.Comment: 7 pages; talk given at the XXVII International Symposium on Lattice Field Theory, July 26-31 2009, Peking University, Beijing, Chin

    Large orders in strong-field QED

    Get PDF
    We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarisation tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 80 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarisation tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.Comment: 26 pages, 6 figure

    Pion and Rho Structure Functions from Lattice QCD

    Get PDF
    We calculate the lower moments of the deep-inelastic structure functions of the pion and the rho meson on the lattice. Of particular interest to us are the spin-dependent structure functions of the rho. The calculations are done with Wilson fermions and for three values of the quark mass, so that we can perform an extrapolation to the chiral limit.Comment: 30pp, LaTeX2e with 15 eps figures using epsfig. Postscript file also available from ftp://ftp.th.physik.uni-frankfurt.de/pub/cbest/pionrho.ps or http://www.th.physik.uni-frankfurt.de/~cbest/pionrho.p

    Non-perturbative improvement of stout-smeared three flavour clover fermions

    Get PDF
    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory.Comment: 30 pages, 13 figures, minor changes, published versio

    Spectroscopy and Renormalisation Group Flow of a Lattice Nambu-Jona-Lasinio Model

    Full text link
    We investigate a lattice Nambu--Jona-Lasinio model both by the Monte Carlo method and Schwinger-Dyson equations. A comparison allows the discussion of finite size effects and the extrapolation to infinite volume. We pay special attention to the identification of particles and resonances. This enables us to discuss renormalisation group flows in the neighbourhood of the critical coupling where the chiral symmetry breaking phase transition takes place. In no region of the bare parameter space do we find renormalisability for the model.Comment: 66 pages, latex and postscript figures. The postscript file for this paper (called njl.ps) is also available from ftp://dirac.physik.fu-berlin.de/ in the directory nj
    • …
    corecore