124 research outputs found

    Ion counting efficiencies at the IGISOL facility

    Full text link
    At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high precision. Fission fragments from a U target are passing through a Ni foil and entering a gas filled chamber. The collected fragments are guided through a mass separator to a Penning trap where their masses are identified. This simulation work focuses on how different fission fragment properties (mass, charge and energy) affect the stopping efficiency in the gas cell. In addition, different experimental parameters are varied (e. g. U and Ni thickness and He gas pressure) to study their impact on the stopping efficiency. The simulations were performed using the Geant4 package and the SRIM code. The main results suggest a small variation in the stopping efficiency as a function of mass, charge and kinetic energy. It is predicted that heavy fragments are stopped about 9% less efficiently than the light fragments. However it was found that the properties of the U, Ni and the He gas influences this behavior. Hence it could be possible to optimize the efficiency.Comment: 52 pages, 44 figure

    Evaluation of Various Dynamic Issues During Transient Operation of Turbocharged Diesel Engine with Special Reference to Friction Development

    Full text link
    Copyright © 2007 SAE International The modeling of transient turbocharged diesel engine operation appeared in the early seventies and continues to be in the focal point of research, due to the importance of transient response in the everyday operating conditions of engines. The majority of research has focused so far on issues concerning thermodynamic modeling, as these directly affect heat release predictions and consequently performance and pollutants emissions. On the other hand, issues concerning the dynamics of transient operation are often disregarded or over-simplified, possibly for the sake of speeding up program execution time. In the present work, an experimentally validated transient diesel engin

    Renewing Criminalized and Hegemonic Cultural Landscapes

    Get PDF
    The Mafia's long historical pedigree in Mezzogiorno, Southern Italy, has empowered the Mafioso as a notorious, uncontested, and hegemonic figure. The counter-cultural resistance against the mafiosi culture began to be institutionalized in the early 1990s. Today, Libera Terra is the largest civil society organization in the country that uses the lands confiscated from the Mafia as a space of cultural repertoire to realize its ideals. Deploying labor force through volunteer participation, producing biological fruits and vegetables, and providing information to the students on the fields are the principal cultural practices of this struggle. The confiscated lands make the Italian experience of anti-Mafia resistance a unique example by connecting the land with the ideals of cultural change. The sociocultural resistance of Libera Terra conveys a political message through these practices and utters that the Mafia is not invincible. This study draws the complex panorama of the Mafia and anti-Mafia movement that uses the ‘confiscated lands’ as cultural and public spaces for resistance and socio-cultural change. In doing so, this article sheds new light on the relationship between rural criminology and crime prevention policies in Southern Italy by demonstrating how community development practice of Libera Terra changes the meaning of landscape through iconographic symbolism and ethnographic performance

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Theoretical Study of the Effects of Spark Timing on the Performance and Emissions of a Light-Duty Spark Ignited Engine Running under Either Gasoline or Ethanol or Butanol Fuel Operating Modes

    No full text
    Much research is ongoing to find suitable alternate fuels in order to reduce the exhaust emission levels without deteriorating the basic performance characteristics of conventional spark-ignited (SI) engines. One of the methods to achieve the above problem is the use of alcohols as full supplement fuels to normal gasoline. At the same time, many related research studies have shown that the use of alcohols has a negative impact on some basic engine performance characteristics, e.g., brake power output, etc. On the other hand, spark timing is one of the critical engine operating parameters that significantly influences the combustion mechanism inside the combustion chamber of a SI engine. Therefore, the primary objective of the present work is to investigate the effect of spark timing on the performance and emissions characteristics of a conventional, four-stroke, SI engine running under three different fuel operating modes, viz. with conventional gasoline or ethanol or butanol. The specific investigation is conducted by using an in-house, comprehensive, two-zone phenomenological model. The predictive ability of the model is tested against pertinent experimental data and it is found that the computed results are in good agreement with the respective experimental ones. For all test cases examined herein, the results concern basic engine performance characteristics, i.e., cylinder pressure, power output, specific fuel consumption etc., as well as NO and CO emissions. The main objectives of the work were to record and evaluate the impact that spark timing has on the performance characteristics and emitted pollutants of a conventional SI engine, operating under either conventional gasoline or ethanol or butanol fuel operating modes. Moreover, it deals with the determination of an optimum combination between the type of fuel used and the spark timing, so that probable undesirable effects on engine performance characteristics would be avoided. By comparing this investigation results, it is revealed that the use of alcohols as a full substitute fuel of gasoline accompanied with an appropriate alteration of the spark timing, could be a promising solution to improving both the efficiency and environmental behavior of a light-duty, spark-ignited (SI) engine, without causing any harmful problems to the engine operational lifetime. The conclusions from the study may prove valuable for the application of this technological solution to existing conventional SI engines

    Evaluation of the Air Oxygen Enrichment Effects on Combustion and Emissions of Natural Gas/Diesel Dual-Fuel Engines at Various Loads and Pilot Fuel Quantities

    No full text
    The use of natural gas (NG) as supplement of the normal diesel fuel in compression ignition (CI) environments (Natural Gas/Diesel Dual-Fuel, NG/DDF), seems to present an answer towards reducing soot or particulate matter (PM) and nitrogen oxides (NOx) emissions in existing and future diesel engine vehicles. The benefits for the environment can be even higher, as recently NG quality gas can be produced from biomass (bio-methane or bio-CNG or ‘green gas’). However, this engine type where the main fuel is the gaseous one and the diesel liquid fuel constitutes the ignition source (pilot), experiences higher specific energy consumption (SEC), carbon monoxide (CO), and unburned hydrocarbons (HC) emissions compared to the conventional (normal) diesel one, with these adverse effects becoming more apparent under partial load operation conditions. Apart from using bio-fuels as pilot fuel, it is anticipated that air oxygen enrichment—addition of oxygen in the intake air—can mitigate (at least partly) the associated negative results, by accelerating the burning rate and reducing the ignition delay. Therefore, the present work strives to investigate the effects of various degrees of oxygen enrichment on the combustion, performance, and emissions of such a NG/DDF engine, operated under various loads and pilot (diesel fuel) quantities. The study is carried out by using an in-house, comprehensive, computational model, which is a two-zone (phenomenological) one. The accuracy of the modeling results are tested by using related experimental data from the literature, acquired in an experimental investigation conducted on a naturally aspirated, light-duty, NG/DDF engine. The computational study is extended to include various pilot fuel quantities, attempting to identify the influence of the examined parameters and witness advantages and disadvantages. The study results demonstrate that the air oxygen enrichment reduces the specific energy consumption and CO emissions, by accelerating the burning rate and reducing the ignition delay (as revealed by the cylinder pressure and rate of heat release diagrams), without impairing seriously the soot and NO emissions. The conclusions of the specific investigation are much useful, particularly if wished to identify the optimum combination of the parameters under examination for improving the overall performance of existing CI engines functioning under natural gas/diesel fuel operating mode
    • 

    corecore