4 research outputs found

    The Amine Content of PEGylated Chitosan Bombyx mori Nanoparticles Acts as a Trigger for Protein Delivery

    No full text
    In modern medicine, effective protein therapy is a major challenge to which a significant contribution can be expected from nanoscience through the development of novel delivery systems. Here we present the effect of the amine content of nanoparticles based on PEGylated chitosan Bombyx mori (PEG-O-ChsBm) copolymers on the entrapment of molecules in a search for highly efficient,nanocarriers. PEG-O-ChsBm copolymers were synthesized with amine contents from 1.12% to 0.70%, and nanoparticles were generated by self-assembly in dilute aqueous solutions. These nanoparticles successfully entrapped molecules with a wide range of sizes, the efficiency of which was dependent on their amine contents. While hydrophobic molecules were entrapped with high efficiency in all types of nanoparticle, hydrophilic molecules were entrapped only in those with low amine content. Bovine serum albumin, selected as a model protein, was entrapped in nanoparticles and efficiently released in acidic conditions. The triggered entrapment of molecules in PEG-O-ChsBm nanoparticles by selection of the appropriate amine content represents a straightforward way to modulate their delivery by fine changes in the properties of nanocarriers

    The Amine Content of PEGylated Chitosan <i>Bombyx mori</i> Nanoparticles Acts as a Trigger for Protein Delivery

    No full text
    In modern medicine, effective protein therapy is a major challenge to which a significant contribution can be expected from nanoscience through the development of novel delivery systems. Here we present the effect of the amine content of nanoparticles based on PEGylated chitosan <i>Bombyx mori</i> (PEG-O-ChsBm) copolymers on the entrapment of molecules in a search for highly efficient nanocarriers. PEG-O-ChsBm copolymers were synthesized with amine contents from 1.12% to 0.70%, and nanoparticles were generated by self-assembly in dilute aqueous solutions. These nanoparticles successfully entrapped molecules with a wide range of sizes, the efficiency of which was dependent on their amine contents. While hydrophobic molecules were entrapped with high efficiency in all types of nanoparticle, hydrophilic molecules were entrapped only in those with low amine content. Bovine serum albumin, selected as a model protein, was entrapped in nanoparticles and efficiently released in acidic conditions. The triggered entrapment of molecules in PEG-O-ChsBm nanoparticles by selection of the appropriate amine content represents a straightforward way to modulate their delivery by fine changes in the properties of nanocarriers

    The Amine Content of PEGylated Chitosan <i>Bombyx mori</i> Nanoparticles Acts as a Trigger for Protein Delivery

    No full text
    In modern medicine, effective protein therapy is a major challenge to which a significant contribution can be expected from nanoscience through the development of novel delivery systems. Here we present the effect of the amine content of nanoparticles based on PEGylated chitosan <i>Bombyx mori</i> (PEG-O-ChsBm) copolymers on the entrapment of molecules in a search for highly efficient nanocarriers. PEG-O-ChsBm copolymers were synthesized with amine contents from 1.12% to 0.70%, and nanoparticles were generated by self-assembly in dilute aqueous solutions. These nanoparticles successfully entrapped molecules with a wide range of sizes, the efficiency of which was dependent on their amine contents. While hydrophobic molecules were entrapped with high efficiency in all types of nanoparticle, hydrophilic molecules were entrapped only in those with low amine content. Bovine serum albumin, selected as a model protein, was entrapped in nanoparticles and efficiently released in acidic conditions. The triggered entrapment of molecules in PEG-O-ChsBm nanoparticles by selection of the appropriate amine content represents a straightforward way to modulate their delivery by fine changes in the properties of nanocarriers
    corecore