20 research outputs found

    Characterisation of norovirus contamination in an Irish shellfishery using real-time RT-qPCR and sequencing analysis

    Get PDF
    Copyright © 2012 Rajko-Nenow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peer reviewedNorovirus (NoV) is the single most important agent of foodborne viral gastroenteritis worldwide. Bivalve shellfish, such as oysters, grown in areas contaminated with human faecal waste may become contaminated with human pathogens including NoV. A study was undertaken to investigate NoV contamination in oysters (Crassostrea gigas) from a shellfishery over a 24 month period from October 2007 to September 2009. Oyster samples were collected monthly from a commercial shellfish harvest area classified as category B under EU regulations, but that had had been closed for commercial harvesting due to its previous association with NoV outbreaks. Real-time reverse transcription quantitative PCR (RT-qPCR) was used to determine the concentration of human NoV genogroups I and II (GI and GII) in monthly samples. Total NoV (GI and GII) concentrations in NoV positive oysters ranged from 97 to 20,080 genome copies g− 1 of digestive tissue and displayed a strong seasonal trend with greater concentrations occurring during the winter months. While NoV GII concentrations detected in oysters during both years were similar, NoV GI concentrations were significantly greater in oysters during the winter of 2008/09 than during the winter of 2007/08. To examine the NoV genotypes present in oyster samples, sequence analysis of nested RT-PCR products was undertaken. Although NoV GII.4 is responsible for the vast majority of reports of outbreaks in the community, multiple NoV genotypes were identified in oysters during this study: GI.4, GI.3, GI.2, GII.4, GII.b, GII.2, GII.12, and GII.e. NoV GI.4 was the most frequently detected genotype throughout the study period and was detected in 88.9% of positive samples, this was followed by GII.4 (43.7%) and GII.b (37.5%). This data demonstrates the diversity of NoV genotypes that can be present in sewage contaminated shellfish and that a disproportionate number of non-NoV GII.4 genotypes can be found in environmental samples compared to the number of recorded human infections associated with non-NoV GII.4 genotypes

    Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host In Vivo

    Full text link
    Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur

    Trapping and bypassing of suspended particulate matter, particulate nutrients and faecal indicator organisms in the river-estuary transition zone of a shallow macrotidal estuary

    Get PDF
    Hydrodynamic controls of the transport of suspended particulate matter (SPM), particulate nutrients and faecal indicator organisms (FIOs) in the river-estuary transition zone (RETZ) of a shallow macrotidal estuary were studied on tidal and seasonal timescales. The RETZ was found to be a conduit for SPM rather than a zone of particle accumulation during spring tides, with complex size fractionation and biogeochemical exchanges of particulate nutrient/FIO compositions. The downstream RETZ was characterised by flood-dominant currents, but with ebb-dominant turbulence due to the suppression of flood tide turbulence by salinity stratification created by lateral convergence; this produced a net seaward mass transport of SPM. Without lateral convergence in the narrower upstream RETZ, flood-dominant currents and flood-dominant turbulence were experienced. Hence the RETZ exported SPM landwards from its upper end and seawards from its lower end — a process observed throughout the year during spring tides and low-to-mean river flows. During neap tides when SPM concentrations were reduced, the RETZ became a zone of minor particle accumulation as its lower end imported SPM landwards from the estuary and its upper end imported SPM seawards from the river. During a river flood event, net SPM flux was significantly increased and was seawards throughout the RETZ. SPM mass concentration and carbon, nitrogen, phosphorous, and FIO concentrations peaked due to local resuspension and advection of an ephemeral estuarine turbidity maximum (ETM). The ETM formed on the advancing flood tide due to entrainment of material from intertidal flats. Flocculation and settling occurred at high slack water. The ETM was reconstituted by entrainment on the ebb and was composed of larger flocs than on the flood. Particulate nutrients and FIOs were associated with flocs in the 10–200 μm range but not with smaller or larger flocs. SPM concentrations in the resuspension component and ETM exceeded microbial water quality standards, emphasising the need for monitoring practices that consider tidal dynamics. The results from this study showing periodic SPM export from, rather than prolonged accumulation in, the RETZ and the influence of particle size fractionation on biogeochemical fluxes in the RETZ, are likely to be transferable to many other embayment-type estuaries on macrotidal coasts

    Long-term trial of protection provided by adenovirus-vectored vaccine expressing the PPRV H protein

    Get PDF
    A recombinant, replication-defective, adenovirus-vectored vaccine expressing the H surface glycoprotein of peste des petits ruminants virus (PPRV) has previously been shown to protect goats from challenge with wild-type PPRV at up to 4 months post vaccination. Here, we present the results of a longer-term trial of the protection provided by such a vaccine, challenging animals at 6, 9, 12 and 15 months post vaccination. Vaccinated animals developed high levels of anti-PPRV H protein antibodies, which were virus-neutralising, and the level of these antibodies was maintained for the duration of the trial. The vaccinated animals were largely protected against overt clinical disease from the challenge virus. Although viral genome was intermittently detected in blood samples, nasal and/or ocular swabs of vaccinated goats post challenge, viral RNA levels were significantly lower compared to unvaccinated control animals and vaccinated goats did not appear to excrete live virus. This protection, like the antibody response, was maintained at the same level for at least 15 months after vaccination. In addition, we showed that animals that have been vaccinated with the adenovirus-based vaccine can be revaccinated with the same vaccine after 12 months and showed an increased anti-PPRV antibody response after this boost vaccination. Such vaccines, which provide a DIVA capability, would therefore be suitable for use when the current live attenuated PPRV vaccines are withdrawn at the end of the ongoing global PPR eradication campaign

    Improved PCR diagnostics using up-to-date in silico validation: An F-gene RT-qPCR assay for the detection of all four lineages of peste des petits ruminants virus

    No full text
    Peste des petits ruminants (PPR) is a globally significant disease of small ruminants caused by the peste des petits ruminants virus (PPRV) that is considered for eradication by 2030 by the United Nations Food and Agriculture Organisation (FAO). Critical to the eradication of PPR are accurate diagnostic assays. RT-qPCR assays targeting the nucleocapsid gene of PPRV have been successfully used for the diagnosis of PPR. We describe the development of an RT-qPCR assay targeting an alternative region (the fusion (F) gene) based on the most up-to-date PPRV sequence data. In silico analysis of the F-gene RT-qPCR assay performed using PCRv software indicated 98% sensitivity and 100% specificity against all PPRV sequences published in Genbank. The assay indicated the greatest in silico sensitivity in comparison to other previously published and recommended PPRV RT-qPCR assays. We evaluated the assay using strains representative of all 4 lineages in addition to samples obtained from naturally and experimentally-infected animals. The F-gene RT-qPCR assay showed 100% diagnostic specificity and demonstrated a limit of detection of 10 PPRV genome copies per μl. This RT-qPCR assay can be used in isolation or in conjunction with other assays for confirmation of PPR and should support the global efforts for eradication.</p
    corecore