17 research outputs found

    Management of health risks associated with oysters harvested from a norovirus contaminated area, Ireland, February–March 2010

    Get PDF
    Copyright © 2010 B. Doré et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peer reviewed.Oysters from a harvesting area responsible for outbreaks of gastroenteritis were relaid at a clean seawater site and subsequently depurated in tanks of purified seawater at elevated temperatures. This combined treatment reduced norovirus levels to those detected prior to the outbreak. On the basis of norovirus monitoring the sale of treated oysters was permitted although the harvest area remained closed for direct sale of oysters. No reports of illness have been associated with the consumption of treated oysters

    Decay rates of faecal indicator bacteria from sewage and ovine faeces in brackish and freshwater microcosms with contrasting suspended particulate matter concentrations

    Get PDF
    AbstractTo safeguard human health, legislative measures require the monitoring of faecal indicator bacteria (FIB) concentrations in recreational and shellfish waters. Consequently, numerous studies have focussed on FIB survival in the water column and more recently in estuarine sediments. However, there is a paucity of information regarding the influence of contrasting suspended particulate matter (SPM) concentrations on the survival of FIB in the water column of estuaries. Here, microcosms containing freshwater or brackish water with low, high and extreme SPM concentrations were inoculated with sewage and ovine faeces and the decay rate of Escherichia coli, coliforms and enterococci were determined by enumeration over five consecutive days. E. coli derived from ovine faeces proliferated and persisted at high levels in both freshwater and brackish microcosms (no decay), whereas ovine enterococci demonstrated a net decay over the duration of the experiment. Furthermore, SPM concentration had a significant effect on the decay rates of both E. coli and enterococci from ovine faeces in brackish microcosms, but decay rate was greater at low SPM concentrations for E. coli, whereas the opposite was observed for enterococci, whose decay rates increased as SPM concentration increased. E. coli, enterococci and coliforms derived from wastewater demonstrated a net decay in both freshwater and brackish microcosms, with contrasting effects of SPM concentration on decay rate. In addition, some FIB groups demonstrated contrasting responses (decay or proliferation) in the first 24h following inoculation into freshwater versus brackish microcosms. Overall, SPM concentrations influenced the proliferation and decay rates of FIB in brackish waters, but had minimal influence in freshwater. These results demonstrate that the survival rates of FIB in aquatic environments are system specific, species and source dependent, and influenced by SPM concentration. This study has important implications for catchment-based risk assessments and source apportionment of FIB pollution in aquatic environments

    The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters

    Get PDF
    Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater–marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial contamination event occurred. Further work, however, is still required to understand and predict the potential human infectivity of pathogenic organisms alongside the better design of early warning systems and surveillance measures for risk assessment purposes
    corecore