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ABSTRACT 

Concentrations of E. coli, FRNA bacteriophage, norovirus genogroup I (NoV GI) and 

II (NoV GII) in wastewater were monitored weekly over a one-year period at a 

wastewater treatment plant (WWTP) providing secondary treatment. A total of 49 

samples of influent, primary and secondary-treated wastewater were analyzed. Using 

a real-time RT-qPCR, mean NoV GI and NoV GII concentrations detected in effluent 

wastewater were 2.53 and 2.63 log10 virus genome copies 100 ml-1 respectively. Mean 

NoV concentrations in wastewater during the winter period (January to March 

inclusive) (n=12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than mean 

concentrations for the rest of the year (n=37). The mean reduction of NoV GI and GII 

during treatment was 0.80 and 0.92 log units respectively with no significant 

difference detected in the extent of NoV reductions due to season. No seasonal trend 

was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater 

influent and showed mean reductions of 1.49 and 2.13 log units respectively. Mean 

concentrations of 3.56 and 3.72 log10 virus genome copies 100 ml-1 for NoV GI and 

GII respectively were detected in oysters sampled adjacent to the WWTP discharge. A 

strong seasonal trend was observed and concentrations of NoV GI and GII detected in 

oyster were correlated with concentrations detected in the wastewater effluent. No 

seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage 

detected in oysters. 
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INTRODUCTION 

Norovirus (NoV) is the most common cause of outbreaks of acute gastroenteritis in 

Ireland (11) and is the major cause of acute non-bacterial gastroenteritis in adults 

worldwide (33). In general NoV causes mild illness involving diarrhoea and vomiting 

although symptoms can be more severe in vulnerable groups such as the elderly (33). 

NoV is spread by the faecal oral route and has been demonstrated to be highly 

infectious particularly in enclosed settings such as schools, hospitals, care homes, 

cruise ships and domestic residence (17, 20, 33).  The NoV genus comprises non-

enveloped, positive-sense RNA viruses of the family Caliciviridae. The genus 

norovirus is genetically diverse and is divided into 5 different genogroups based on 

the sequence similarity of the capsid protein (24). Each genogroup has a varying 

number of genotypes; NoV genogroup I (NoV GI) and NoV genogroup II (NoV GII) 

contain the majority of NoV genotypes that have been implicated as causing illness in 

humans (45). NoV GII, and in particular variants of the NoV GII genotype 4, are most 

commonly associated with human illness in clinical and community outbreaks (8, 31, 

45). 

NoV can be shed in large numbers (up to 108 viruses g-1) in the faeces of infected 

individuals (28) and can continue to be excreted for up to two weeks post-resolution 

of symptoms (39), NoV is, therefore, commonly present in municipal wastewater (13, 

25, 36). The discharge of municipal wastewater into aquatic environments is practiced 

throughout the world and the link between wastewater discharge and the 

contamination of bivalve molluscan shellfish is well established (29). Such 

contamination occurs because bivalve molluscan shellfish such as oysters are filter 

feeders and can accumulate micro-organisms particularly when grown in sewage 

contaminated water (29). Oysters can become contaminated with NoV in this manner 
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and have been linked to numerous outbreaks of gastroenteritis in consumers (1, 15, 

43, 51). This public health problem is recognised worldwide and sanitary regulations 

based on bacterial standards exist to control the risk. However, despite compliance 

with the existing bacterial standards, NoV contaminated oysters continue to cause 

illness on an ongoing basis (15, 51). The environmental discharge of wastewater is 

also closely regulated to limit this impact. In Europe, designated sensitive marine sites 

such as shellfish harvesting areas are protected under the appropriate environmental 

regulations such as the Shellfish Waters Directive (2006/113/EC) (2). Authorities 

must endeavour to ensure that shellfish harvested from designated shellfisheries 

comply with the relevant bacterial standards. Wastewater treatment can be considered 

to be a significant control point to limit the extent of microbial contamination of the 

marine environment and achieve compliance with both food safety and environmental 

bacterial standards. The impact of wastewater treatment on faecal indicator organisms 

such as Escherichia coli (E. coli) has been extensively studied and comprehensive 

data exists on the removal of such organisms through wastewater treatment (32, 50). 

Similarly, the survival of faecal indicator organisms in the marine environment is well 

described (9). Therefore it is possible to accurately predict the likely microbiological 

impact of a wastewater treatment plant (WWTP) discharge on a shellfishery in terms 

of faecal bacteria allowing the likelihood of compliance with the regulatory limits to 

be determined. Data from previous studies generally indicate that concentrations of 

enteric viruses may be reduced to a lesser extent than bacteria during the wastewater 

treatment processes (19, 22); limited data, however, exists concerning the extent of 

NoV removal during WWTP treatment. The lack of such data is primarily due to the 

absence of a reliable culture system for NoV and has lead to the use of viral indicator 

organisms. FRNA bacteriophage of the family Leviviridae have been used as 
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surrogates for enteric viruses in wastewater (22) and in shellfish (16). The detection of 

NoV in environmental samples using molecular techniques has traditionally been 

difficult because of the relatively low target concentrations involved and the 

inhibitory substances present in such samples (27). Recently, robust real-time RT-

qPCR procedures has been used for the quantitation of NoV in shellfish (27) and 

wastewater (13, 36). da Silva et al., (13) monitored wastewater effluents to assess the 

removal of NoV during different wastewater treatment processes using real-time RT-

qPCR and found that all processes studied reduced the NoV concentrations discharged 

into receiving waters. Nordgren et al., (36) monitored the concentrations of NoV in 

wastewater effluents over a one year period and found that NoV GII demonstrated a 

seasonal trend with greater concentrations detected in the winter months. In addition, 

both NoV GI and GII reductions during wastewater treatment were similar. However, 

no quantitative studies assessing the reduction of NoV through a WWTP and 

subsequent transmission to shellfish are present in the available literature. The aim of 

this study was to evaluate the reduction of NoV GI and NoV GII through a WWTP 

providing secondary treatment and to evaluate the impact of the discharge on the 

concentrations of NoV in oysters adjacent to the outfall. 
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MATERIALS AND METHODS 

Wastewater Treatment Plant and Wastewater Sampling  

The WWTP studied treated wastewater from a population equivalent (P.E.) of 91600 

and received an average daily volume of incoming wastewater of 45000 m3. 

Preliminary treatment at the plant provided screening and grit removal. This was 

followed by treatment with a conventional activated sludge system including primary 

settlement, aeration and final settlement. The final effluent was discharged into the 

sea through a 400 m long outfall pipe at a depth of 10 m.  

One litre, 24-hour composite samples of influent and final effluent were taken on a 

weekly basis. In addition, a one litre grab sample of wastewater was collected 

following primary treatment. All wastewater samples were collected in polyethylene 

bottles and transported under ambient temperatures to the laboratory within one hour 

of collection. Wastewater sampling commenced in June 2009 and ended in May 2010 

(n=49). 

 

Concentration procedure for wastewater sample NoV analysis 

A conventional filter adsorption-elution method was used for the concentration of 

wastewater samples and was based on previously described methods (6, 26). Four 

hundred microlitres of 2.5M MgCl2 (Sigma-Aldrich, United Kingdom) was added to a 

single, 40 ml sample volume of wastewater to obtain a final concentration of 25 mM 

MgCl2. The sample was then adjusted to between pH 3.5 and pH 6.0 with 1M HCl 

(Sigma-Aldrich) and mixed on a rocking platform for 45 minutes. The sample was 

then passed through a glass fibre pre-filter (Millipore, Billerica, MA) placed directly 

on a bacteriological membrane filter (0.45 µm pore size and 90mm diameter; 

Millipore) attached to a plastic magnetic filter holder (Pall, Port Washington, NY). 
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The filters were then washed once using 25 ml 0.14M NaCl and dried of excess wash 

solution prior to placing the bacteriological membrane filter in 4 ml 50 mM glycine-

NaOH buffer pH 9.5 and shaking at 500 rpm for 20 min. The virus eluate was 

transferred to a tube containing 100 µl of 1 M HCl (pH 1.0) followed by 

centrifugation using an Amicon® Ultra-4 centrifugal filter unit (Millipore) at 4000 x g 

for 10 min. The filter unit was washed in 550 µl of molecular biology grade water and 

the virus concentrate (>500 µl) stored at -20°C prior to RNA extraction.  

 

Oyster sampling 

Oysters from a batch previously demonstrated to be free from microbial 

contamination (E. coli, FRNA bacteriophage and NoV) were suspended in mesh bags 

1m below the water surface directly above the WWTP outfall. Oysters were deployed 

at the outfall for one month before sampling commenced. Samples of 24 oysters were 

collected each week and transported to the laboratory within 2 hours under chilled 

conditions (<15°C). Each week oyster samples were collected five days before the 

wastewater samples were collected. Oyster sampling commenced in July 2009 and 

ended in May 2010 (n=38). 

 

Preparation of oyster samples for E. coli, FRNA bacteriophage and NoV analysis 

Upon receipt into the laboratory any dead or open oysters not responding to 

percussion were discarded. Oyster samples were analyzed for E. coli and FRNA 

bacteriophage within 24 hours of receipt using previously published methods (4, 5). 

For E. coli and FRNA bacteriophage analysis, 10 oysters were thoroughly cleaned 

under running potable water, the meat and intravalvular fluid was homogenized using 

a blender and diluted 1:3 with 0.1% (w/v) neutralised bacteriological peptone (Oxoid, 
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Cambridge, U.K.) (3). For FRNA bacteriophage analysis, 50 ml of the diluted 

homogenate was centrifuged at 2000 x g for 10 min and the supernatant retained for 

testing. 

For NoV analysis a further 10 oysters were opened and the hepatopancreas from each 

oyster was dissected and was finely chopped. Two grams of oyster hepatopancreas 

was weighed to which 2 ml of 100 µg ml-1 Proteinase K solution (30 Umg-1; Sigma-

Aldrich) was added. Fifty microlitres of Mengo virus strain MC0 was added at this 

stage as an internal positive control (IPC) virus controlling for the virus extraction 

efficiency  similar to that described by  Costafreda et al., (12). The sample was then 

incubated at 37°C with shaking at 150 rpm for 1 hour followed by incubation at 60°C 

for 15 min. The sample was then centrifuged at 3000 × g for 5 min and the 

supernatant was retained for RNA extraction. The homogenates were either stored at 

4°C prior to RNA extraction within 24 hours, or stored at -80°C where RNA 

extraction was undertaken within 1 month. 

 

E. coli enumeration in wastewater and bivalve molluscan shellfish 

Appropriate log dilutions of influent and effluent wastewater samples respectively and 

diluted shellfish homogenates were assayed for E. coli using a standardized five-tube 

three-dilution most probable number (MPN) method (5). This procedure is the 

mandatory method used in Europe to classify shellfish harvesting areas. The diluted 

wastewater and homogenates were inoculated into 10 ml volumes of minerals 

modified glutamate broth MMGB (CM0607, Oxoid) and were incubated at 37°C for 

24 ± 2 hours. The presence of E. coli was subsequently confirmed by subculturing 

tubes indicating acid production onto TBX agar (CM0945, Oxoid) at 44°C for 24 ± 2 
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hours. The limit of detection (LOD) of the assay was an MPN of 20 E. coli 100 g-1 

and 20 E. coli 100 ml-1 for shellfish and wastewater samples respectively. 

 

FRNA bacteriophage enumeration in wastewater and bivalve molluscan shellfish 

The diluted wastewater samples and shellfish homogenate was analyzed for FRNA 

bacteriophage using a standardized procedure (4) that uses the Salmonella enterica 

serovar Typhimurium WG49 host (21). S. Typhimurium has been genetically 

engineered by the inclusion of an F-pili producing plasmid and has been shown to 

reliably select for FRNA bacteriophage and demonstrate negligible interference from 

somatic bacteriophage (22). Briefly, to 2.5 ml of molten 1% tryptone yeast-extract 

glucose agar held at 45°C, was added 1 ml volumes of appropriately diluted sample 

and 1ml of host culture (>106 cfu ml-1). This mixture was poured onto 2 % tryptone 

yeast-extract glucose agar plates and incubated overnight at 37°C. Characteristic 

plaques were counted and each plaque was assumed to originate from one FRNA 

bacteriophage. The results were expressed as the number of plaque-forming units 

(pfu) 100g-1. The LOD of the assay for shellfish and wastewater samples was 30 pfu 

100 g-1 and 10 pfu 100 ml-1, respectively. 

 

NoV RNA extraction procedure for shellfish and wastewater extracts 

RNA was extracted from 500 µl of wastewater extract or shellfish Proteinase K 

extract using the NucliSENS® miniMAG® extraction platform and NucliSENS® 

magnetic extraction reagents (bioMérieux, Marcy l’Etoile, France) following the 

manufacturer’s instructions. Viral RNA was eluted into 100 µl of elution buffer 

(bioMérieux). A single negative RNA extraction control (using water only) was 

processed alongside shellfish and wastewater samples to be extracted. The eluted 

RNA was stored at -80°C until analysis using real-time RT-qPCR was undertaken. 
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RT-qPCR controls and standards 

Plasmids carrying the NoV GI and GII target sequences (supplied by Dr. Francoise S. 

LeGuyader, Ifremer, Nantes, France) were used to prepare standards for quantitation 

and controls for determining RT-PCR inhibition.  Plasmids were transformed in 

competent cells to create dsDNA and purified as described by Le Guyader et al., 2009 

(27). From the purified dsDNA, single-use aliquots containing 105 genome copies µl-1 

NoV GI and NoV GII were prepared for quantitation in the RT-qPCR. From the 

dsDNA plasmids, external control (EC) RNA was prepared using the same procedure 

as Le Guyader et al., 2009 (27) and were divided into single-use aliquots of 107 

genome copies µl-1 for NoV GI and GII for use in determining RT-PCR inhibition. 

The dsDNA and EC RNA standards were stored at -20°C for a period of less than 6 

months at which time a new batch was prepared containing the same concentration. 

 

Determination of NoV GI and GII using one-step RT-qPCR 

For NoV GI and NoV GII analysis of wastewater and shellfish samples, duplicate 5µl 

aliquots of sample RNA was added to adjacent wells of a 96-well optical reaction 

plate. This was followed by 20 µl of the appropriate one-step reaction mix prepared 

using RNA Ultrasense one-step RT-qPCR system (Invitrogen, Carlsbad, CA) 

containing 1 × reaction mix, 500 nM forward primer, 900 nM reverse primer, 250 nM 

probe, 1 × µl Rox and 1.25 µl of enzyme mix. For NoV GI analysis, previously 

described primers QNIF4 (13), NV1LCR and probe NVGG1p (48) and for NoV GII 

analysis, primers QNIF2 (30), COG2R (23) and probe QNIFS (30) were used. In 

addition, no template controls were included for NoV GI, GII and IPC virus on the 

same 96-well plate. The plate was incubated at 55°C for 60 min, 95°C for 5 min and 
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then 45 cycles of 95°C for 15s, 60°C for 1 min and 65°C for 1 min on an AB7500 

real-time PCR instrument (Applied Biosystems, Foster City, CA). 

To control for the presence of RT-PCR inhibitors 5 µl of sample RNA was added to a 

further two wells to which 1 µl of EC RNA (107 genome copies µl-1) was added. A 

log dilution series of the NoV GI and GII EC RNA ranging from 107 to 104 copies µl-1 

was included on each RT-qPCR run.  The mean CT value obtained for samples that 

included the EC RNA was used to calculate the quantity of EC RNA detected in the 

sample which was then used to estimate PCR amplification efficiency which was 

expressed as a percentage. Wastewater and oyster samples with an amplification 

efficiency greater than 25% were accepted for inclusion in this study.  

For extraction efficiency, samples seeded with the IPC, Mengo virus, were subjected 

to RT-qPCR for Mengo virus.  Twenty microlitres of a one-step reaction mix prepared 

with the same one-step RT-qPCR system containing the same concentrations of 

reaction mix, primers, probe, Rox and enzyme mix as was used for NoV analysis. 

Duplicate 5µl aliquots of sample or extraction control RNA were added to the 

adjacent wells of the 96-well plate. Forward (Mengo209) and reverse (Mengo110) 

primers and probe (Mengo147) used were the same as those described by Pinto et al., 

2009 (44).  The CT value of the sample was compared to a standard curve obtained by 

preparing log dilutions from the same batch of Mengo virus as was used to seed 

samples for analysis, and was subsequently expressed as percentage extraction 

efficiency. Samples with an extraction efficiency of greater than 1% were accepted for 

inclusion in this study.  

To enable quantification of NoV RNA in copies per µl, a log dilution series of the GI 

and GII DNA plasmids (range 1 × 100 to 1 × 105 copies per µl) was included in 

duplicate on each RT-qPCR run. The number of RNA copies in NoV positive samples 
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was determined by comparing the CT  value to the standard curves. The final 

concentration was then adjusted to reflect the volume of RNA analyzed and was 

expressed as detectable virus genome copies g-1 hepatopancreas or detectable virus 

genome copies 100 ml-1 wastewater. The LOD for NoV GI and GII was 20 detectable 

virus genome copies g-1 and 25 detectable virus genome copies 100 ml-1 for shellfish 

and wastewater samples respectively.  

 

Calculation of log reductions of E. coli, FRNA bacteriophage and NoV through 

the wastewater treatment process 

The reductions by the wastewater treatment process were calculated using the 

following equation: 

Log reductions = log10 (Ninf/Neff) 

where: Ninf = concentration of microbial parameter (MPN E. coli 100 ml-1, FRNA 

bacteriophage pfu 100 ml-1 and NoV genome copies 100 ml-1) detected in influent 

wastewater; Neff = concentration of microbial parameter (MPN E. coli 100 ml-1, 

FRNA bacteriophage pfu 100 ml-1 and NoV genome copies 100 ml-1) detected in  

primary or secondary treated effluent wastewater. For the samples with negative 

results (n=2), the log reductions could not be determined; however, the minimum log 

reductions were estimated by applying a value of the detection limit of the assay. 

Minitab statistical software version 15 (Minitab Inc., PA, USA) was used for the data 

analysis whereby all data was initially assessed for normality (Anderson Darling) and 

then log transformed to achieve a normal distribution. 
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RESULTS 

Concentrations of microbial parameters detected in wastewater 

E. coli, FRNA bacteriophage, NoV GI and GII concentrations detected in all influent, 

post-primary and post-secondary treated effluents are shown in table 1. E. coli 

concentrations ranged from 3.73 to 7.54 log10 MPN 100 ml-1 in influent wastewater 

and underwent a mean log reduction of 1.49 log10 MPN 100 ml-1 during the entire 

treatment process. The mean reduction of FRNA bacteriophage was 2.13 log10  pfu 

100 ml-1 with mean concentrations of 5.54, 5.46 and 3.41 log10  pfu 100 ml-1 detected 

in influent, primary treated and secondary treated effluent respectively. No correlation 

was found between concentrations of E. coli and FRNA bacteriophage with either 

NoV GI or Nov GII levels in influent and effluent wastewater (r< 0.07 in all 

instances). 

NoV GI and GII was detected in influent and effluent wastewater on all sampling 

occasions throughout the sampling period. Mean concentrations of NoV GI and NoV 

GII detected in influent wastewater were 3.32 and 3.55 log10 genome copies 100 ml-1 

respectively. Mean concentrations of NoV GI and NoV GII detected in effluent 

wastewater were 2.53 and 2.63 log10 genome copies 100 ml-1, respectively. NoV GII 

concentrations in influent wastewater were significantly greater (p<0.05) than 

concentrations of NoV GI and the mean concentrations of NoV GII were 0.23 log10 

virus genome copies 100 ml-1 higher than NoV GI concentrations.  

The mean NoV GI and GII reduction during the entire treatment process was 0.80 and 

0.92 log10 virus genome copies respectively. Although the mean log10 reduction 

achieved throughout the study period was 0.12 greater for NoV GII compared with 

NoV GI, this difference was not statistically different (p =0.25). Mean log10 
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reductions for all microorganisms ranged from 0.13 (NoV GI) to 0.32 (FRNA 

bacteriophage) log10 units following primary treatment (Table 1). 

 

Seasonal variation in NoV concentrations 

NoV GI and GII concentrations detected in the influent wastewater during the winter 

period were significantly higher (p < 0.05) than during the rest of the year (Table 2). 

Mean concentrations of NoV GI and GII in the influent wastewater for the period 

January to March inclusive (n=12) were 0.82 and 1.41 log10 virus genome copies 

100ml-1 greater than mean concentrations for the rest of the year (n=37) respectively. 

No significant difference was detected in the extent of NoV reductions during 

treatment due to season and consequently NoV concentrations in the final effluent 

were also significantly higher (p < 0.05) during the January to March period (Table 2) 

than during the rest of the year. The ratio of NoV GI to GII detected in wastewater 

also varied by season. Throughout the period January-March 2010, NoV GII 

concentrations were on average 0.49 log10 higher than NoV GI concentrations in 

effluent wastewater and 0.63 log10 higher in influent wastewater. The mean difference 

between NoV GI and GII concentrations at this time of year was highly significant (p 

< 0.05). However, no significant difference was detected between NoV GI and GII 

concentrations during the rest of the year (April-December 2009). Unlike NoV 

concentrations, no seasonal trend was detected in the concentration of FRNA 

bacteriophage or E. coli in wastewater influent or effluent.  

 

Oysters 

Mean FRNA bacteriophage and E. coli concentrations detected in oysters throughout 

the study period were 4.14 log10 pfu 100 g-1 (SD ± 0.64) and 3.22 log10 MPN 100 g-1 
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(SD ± 0.55) respectively. On a sample by sample basis, E. coli concentrations in 

oysters did not correlate with concentrations of NoV GI or GII (r= -0.097; p= 0.57) 

(r= 0.184; p= 0.26). Similarly, FRNA bacteriophage concentrations did not correlate 

with NoV GI or GII(r= 0.015; p= 0.93 or r= 0.252; p= 0.127 respectively). Unlike for 

NoV, no seasonal difference was observed in the concentrations of FRNA 

bacteriophage and E. coli in oysters. Weekly concentrations of NoV detected in 

oysters and wastewater effluent are shown in Figure 1. Mean NoV GI and GII 

concentrations detected in oysters over the year long monitoring were 3.53 and 3.73 

log10 virus genome copies g-1 respectively (Table 3). NoV detected in oyster samples 

displayed a strong seasonal trend with significantly higher concentrations (p < 0.05) 

in the winter compared with the rest of the year. Mean concentrations of NoV GI and 

GII detected during the January to March period were 1.31 and 1.65 log10 virus 

genome copies g-1 greater than concentrations detected during the rest of the year 

respectively. Log concentrations of NoV in oysters were significantly correlated with 

concentrations detected in effluent wastewater on a weekly basis (NoV GI r =0.48; p 

<0.05 and NoV GII r =0.68; p <0.05).   

 

DISCUSSION 

In this study we detected NoV in wastewater from a WWTP on a weekly basis 

throughout a year-long monitoring period. The use of real-time RT-qPCR in this study 

demonstrated that NoV was continuously discharged into the marine environment 

from the WWTP throughout the year. NoV GI and NoV GII was continuously 

detected in influent wastewater, demonstrating that both NoV genotypes circulate in 

the human population throughout the year. Whilst NoV was detected in wastewater 

year-round, the concentrations of NoV GI and GII increased significantly during the 
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period January to March. This increase was most pronounced with NoV GII and is 

consistent with epidemiological reports that generally record a predominance of NoV 

GII infections occurring at this time of year (35). NoV related gastroenteritis 

infections in the community are recognised as being strongly seasonal with peak 

infections observed during the colder winter months (24, 35). During the period 

January to March 2010, the Health Protection Surveillance Centre in Ireland recorded 

1309 cases of NoV infections. Furthermore, 202 cases were recorded in the region 

where the WWTP investigated in this study is located (11) compared with a total of 

60 during the remainder of the year recorded in this area. It is notable that although 

the majority of NoV infections are generally associated with NoV GII (45), high 

concentrations of NoV GI were simultaneously detected in wastewater. The fact that 

there was a seasonal increase in the concentration of NoV GI detected in the 

wastewater concurrent with increased NoV GII concentrations during this study 

would appear to be evidence of a simultaneous increase of NoV GI infections in the 

community during this period.  Given this, it is possible that the significance of 

symptomatic NoV GI infections in the community is under-estimated or alternatively 

that there is a significant concentration of shedding of NoV GI in the community 

associated with increased asymptomatic infections occurring at this time of year. 

The concentrations of NoV detected in the present study differ to those found in a 

number of previous studies investigating the removal of NoV during wastewater 

treatment. These have indicated that NoV is often absent in wastewater effluent 

particularly during the summer months (19, 25).  However in a recent year-long study 

by Nordgren et al., NoV was detected from a WWTP serving a P.E. in excess of 

800,000 (36). It may be that the detection of NoV throughout the year during the 

previous study and our investigation may be related to the size of the population 
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served by the WWTP. There is likely to be a greater chance of NoV being present in 

wastewater from WWTPs serving large populations considering that only a relatively 

small percentage of the population may be shedding NoV during non-epidemic 

periods.   

The reduction of NoV GI and GII during wastewater treatment was consistent 

between genogroups irrespective of the initial concentrations of virus present in the 

influent. This suggests that both genogroups are impacted in a similar manner to one 

another during the activated sludge treatment process investigated here. Moreover, 

NoV GI and NoV GII underwent similar reductions, irrespective of the season and 

NoV was released to the environment with the same seasonal profile as observed for 

infections in the community. The application of real-time RT-qPCR procedures in this 

study indicates that  mean reductions for NoV GI and NoV GII concentrations of less 

than one log10 virus genome copy are achieved through a conventional activated 

sludge WWTP and falls within the range previously reported (36, 40). This limited 

reduction means that during the winter period, NoV GI and GII were discharged in 

wastewater effluent at concentrations greater than 3 log10 virus genome copies 100 ml-

1.  Concentrations recorded post primary treatment for all microbiological parameters 

in this study indicate that minimal reduction is achieved by this process. In this study, 

the majority of the reduction achieved for each of the parameters investigated was 

observed during the activated sludge, secondary treatment process.  

Recently a specialised tissue culture system for the detection of NoV has been 

reported (47). However, this has not been used to investigate NoV concentrations in 

environmental samples and currently it is not possible to directly investigate the 

viability of NoV in wastewater effluent. The absence of a reliable tissue culture 

system has lead to the adoption of virus surrogates for use in inactivation studies (14, 
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38, 49). FRNA bacteriophage have been proposed as surrogates for enteric viruses in 

a range of settings including shellfish harvesting areas and wastewater treatment 

processes (16, 18, 22, 46). The mean log10 FRNA bacteriophage reduction observed 

during this study was 2.11 log10 which is significantly greater than that observed for 

NoV and is consistent with other reports (7, 10, 52). We employed a direct agar 

overlay plaque assay to detect only viable FRNA bacteriophage and this may account 

for the greater reduction observed over NoV rather than a true difference between the 

level of reduction for the two viruses. It has been demonstrated that real-time RT-

qPCR procedures may detect both infectious and non-infectious virus particles (37, 

41, 42). It is possible; therefore, that inactivated NoV may be detected by the real-

time RT-qPCR method used here. Therefore, the results from our study and others 

(13, 25, 36) may overestimate the number of infectious virus present in the final 

effluent and thus underestimate the reduction of viable viruses and the infectious risk. 

Pecson et al., (41) found that a 4-log reduction in infectious bacteriophage MS2 when 

exposed to UV irradiation produced a real-time PCR signal loss of just 0.11 log10. 

Therefore in this study, it was not possible to determine whether the reductions of 

NoV are representative of the actual level of NoV reduction that would be observed if 

a viability assay was used to detect infectious NoV. It is clear that relying solely on 

real-time PCR to determine the viral reduction during wastewater treatment may be 

misleading and in the absence of a culture system for NoV, a surrogate culturable 

virus may provide a better indication of the reduction of infectious viruses throughout 

wastewater treatment processes. FRNA bacteriophage may prove useful for this 

purpose until such time that a reliable culture system for NoV or procedures to 

estimate concentrations of viable NoV become available. 
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In Ireland, as in the rest of the European Union, E. coli is used as the bacterial 

indicator organism to assess the sanitary quality of bivalve molluscan shellfish. 

Monthly sampling of the oysters in this study would have showed compliance with a 

category B harvesting area (<4600 MPN E. coli 100 g-1 in 90% of samples) meaning 

that the oysters could be sold for consumption following minimal treatment such as 

depuration (29). Given the minimal reduction of NoV provided by the WWTP, 

elevated concentrations of NoV were detected in oysters harvested adjacent to the 

outfall throughout the year. These concentrations would be consistent with those that 

have caused illness in consumers (15) and demonstrates the inadequacy of E. coli to 

assess the NoV risk associated with oysters. As alternatives to E. coli, FRNA 

bacteriophage have been proposed as a viral surrogate to indicate the presence of NoV 

in oysters previously (16, 18) and thus were included in this study. However, no 

seasonal trend was observed during our study as has been observed by others (34) and 

oysters were contaminated to consistent concentrations year round and did not 

demonstrate an increased risk of higher concentrations of NoV being present during 

the winter months. This questions their suitability of use as an indicator of NoV in 

oysters. However, it has been proposed that FRNA bacteriophage may provide useful 

information on the viral contamination of shellfish in areas that are infrequently 

impacted by sewage rather than in areas undergoing continuous wastewater inputs as 

studied here (18).  

This study provides a comprehensive dataset concerning the concentrations of NoV 

GI and GII in a WWTP providing secondary treatment and the effect of effluent on 

NoV concentrations in shellfish. As wastewater treatment is considered an important 

control in reducing the microbial contamination of aquatic environments to acceptable 

concentrations, the actual reduction provided by treatment processes has implications 
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for plant operators and water management agencies. The data from this and other 

studies (25, 36) demonstrates that conventional wastewater treatment processes 

cannot be relied upon in isolation to prevent the contamination of the marine 

environment and thus oysters with NoV as determined using real-time PCR. As yet, 

methods are not available to differentiate infectious from non-infectious NoV and the 

detection of NoV in oysters using current procedures may overestimate the infectious 

risk. It is probable that low concentrations of NoV, as determined using real-time 

PCR, may not have an impact on consumer health. Therefore, results from widespread 

general monitoring of oysters need to be placed in context and should be considered 

to be one element of a more comprehensive risk-based approach to managing NoV 

contamination in shellfisheries. A more useful approach may be to target at risk 

harvest areas identified through the use of sanitary surveys and areas known to be at 

risk of contamination by municipal wastewater to mitigate the risk of NoV 

contamination from oysters. 
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 Figure 1. Concentrations of NoV GI (A) and NoV GII (B) detected in oysters and 

effluent wastewater. Concentrations of NoV GI (○) and NoV GII (□) detected in 

oysters are expressed as log10 genome copies g-1 oyster hepatopancreas and 

concentrations of NoV GI (●) and NoV GII (■) in effluent are expressed as log10 

genome copies 100 ml-1. Dashed lines indicate the limit of detection for shellfish (— 

—) and wastewater analysis ( ). 

 



Table 1. Mean log10 concentrations of E. coli, FRNA bacteriophage and NoV GI and GII wastewater treatment stages and associated mean log 

reductions  

 

 Wastewater Treatment Stage 

 Influent Post primary settlement Post final settlement 

n = 49 Concentration ± SD Concentration ± SD Reduction ± SD Concentration ± SD Reductiona ± SD 

E. coli 

 

6.54 ± 0.59 

(3.73-7.54) 

6.38 ± 0.51 

(4.54-7.38) 

0.16 ± 0.64 5.06 ± 0.58 

(3.54-6.20) 

1.49 ± 0.63 

FRNA 

bacteriophage 

5.54 ± 0.51 

(3.87-6.82) 

5.23 ± 0.55 

(3.41-5.96) 

0.32 ± 0.55 3.41 ± 0.77 

(2.00-5.84) 

2.13 ± 0.76 

NoV GI 

 

3.32 ± 0.64 

(2.05-4.76) 

3.17 ± 0.71 

(1.62-4.57) 

0.13 ± 0.64 2.53 ± 0.57 

(1.26-4.06) 

0.80 ± 0.49 

NoV GII 

 

3.55 ± 0.89 

(1.81-5.34) 

3.40 ± 0.84 

(1.46-5.51) 

0.14 ± 0.65 2.63 ± 0.71 

(1.51-4.08) 

0.92 ± 0.76 

a The reduction shown is the total reduction provided by the entire treatment process 

 



Table 2. Mean log10 concentrations of NoV GI and GII in influent and effluent wastewater by 

season. 

 

  Mean concentration  

(log10 virus genome copies 100 ml-1) ± SD 

NoV genogroup  Season Influent Effluent 

GI  April-Dec.a  3.12 ± 0.55 2.32 ± 0.68 

 Jan.-Mar.b 3.94 ± 0.49 3.06 ± 0.55 

GII  April-Dec.a 3.20 ± 0.71 2.27 ± 0.39 

 Jan.-Mar.b 4.61 ± 0.41 3.53 ± 0.65 

a 37 samples were analyzed during this period 

b 12 samples were analyzed during this period 

 

 

Table 3. Mean log10 NoV concentrations in oysters grouped by season 

 

 Mean  concentration 

(log10 virus genome copies g-1) ± SD 

Season (n) NoV GI NoV GII 

All data (38) 3.53 ± 0.87 3.73 ± 0.55 

April-Dec. (26) 3.12 ± 0.68 3.21 ± 0.56 

Jan.-Mar. (12) 4.43 ± 0.50 4.86 ± 0.54 
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Figure 1. Concentrations of NoV GI (A) and NoV GII (B) detected in oysters and effluent 

wastewater. Concentrations of NoV GI (○) and NoV GII (□) detected in oysters are expressed 

as log10 genome copies g-1 oyster hepatopancreas and concentrations of NoV GI (●) and NoV 

GII (■) in effluent are expressed as log10 genome copies 100 ml-1. Dashed lines indicate the 

limit of detection for shellfish (— —) and wastewater analysis ( ). 
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