56 research outputs found

    RDR6-mediated synthesis of complementary RNA is terminated by miRNA stably bound to template RNA

    Get PDF
    RNA-dependent RNA polymerase RDR6 is involved in the biogenesis of plant trans-acting siRNAs. This process is initiated by miRNA-directed and Argonaute (AGO) protein-mediated cleavage of TAS gene transcripts. One of the cleavage products is converted by RDR6 to double-stranded (ds)RNA, the substrate for Dicer-like 4 (DCL4). Interestingly, TAS3 transcript contains two target sites for miR390::AGO7 complexes, 5′-non-cleavable and 3′-cleavable. Here we show that RDR6-mediated synthesis of complementary RNA starts at a third nucleotide of the cleaved TAS3 transcript and is terminated by the miR390::AGO7 complex stably bound to the non-cleavable site. Thus, the resulting dsRNA has a short, 2-nt, 3′-overhang and a long, 220-nt, 5′-overhang of the template strand. The short, but not long, overhang is optimal for DCL4 binding, which ensures dsRNA processing from one end into phased siRNA duplexes with 2-nt 3′-overhang

    RDR6-mediated synthesis of complementary RNA is terminated by miRNA stably bound to template RNA

    Get PDF
    RNA-dependent RNA polymerase RDR6 is involved in the biogenesis of plant trans-acting siRNAs. This process is initiated by miRNA-directed and Argonaute (AGO) protein-mediated cleavage of TAS gene transcripts. One of the cleavage products is converted by RDR6 to double-stranded (ds)RNA, the substrate for Dicer-like 4 (DCL4). Interestingly, TAS3 transcript contains two target sites for miR390::AGO7 complexes, 5′-non-cleavable and 3′-cleavable. Here we show that RDR6-mediated synthesis of complementary RNA starts at a third nucleotide of the cleaved TAS3 transcript and is terminated by the miR390::AGO7 complex stably bound to the non-cleavable site. Thus, the resulting dsRNA has a short, 2-nt, 3′-overhang and a long, 220-nt, 5′-overhang of the template strand. The short, but not long, overhang is optimal for DCL4 binding, which ensures dsRNA processing from one end into phased siRNA duplexes with 2-nt 3′-overhangs

    Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis

    Get PDF
    Biogenesis of trans-acting siRNAs (tasiRNAs) is initiated by miRNA-directed cleavage of TAS gene transcripts and requires RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Here, we show that following miR173 cleavage the entire polyadenylated parts of Arabidopsis TAS1a/b/c and TAS2 transcripts are converted by RDR6 to double-stranded (ds)RNAs. Additionally, shorter dsRNAs are produced following a second cleavage directed by a TAS1c-derived siRNA. This tasiRNA and miR173 guide Argonaute 1 complexes to excise the segments from TAS2 and three TAS1 transcripts including TAS1c itself to be converted to dsRNAs, which restricts siRNA production to a region between the two cleavage sites. TAS1c is also feedback regulated by a cis-acting siRNA. We conclude that TAS1c generates a master siRNA that controls a complex network of TAS1/TAS2 siRNA biogenesis and gene regulation. TAS1/TAS2 short dsRNAs produced in this network are processed by DCL4 from both ends in distinct registers, which increases repertoires of tasiRNA

    Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense

    Get PDF
    To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding region

    Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense

    Get PDF
    To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions
    corecore