109 research outputs found

    FlashCam: A fully digital camera for CTA telescopes

    Full text link
    The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrumentation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    Six-minute walk distance after coronary artery bypass grafting compared with medical therapy in ischaemic cardiomyopathy

    Get PDF
    Background: In patients with ischaemic left ventricular dysfunction, coronary artery bypass surgery (CABG) may decrease mortality, but it is not known whether CABG improves functional capacity. Objective: To determine whether CABG compared with medical therapy alone (MED) increases 6 min walk distance in patients with ischaemic left ventricular dysfunction and coronary artery disease amenable to revascularisation. Methods: The Surgical Treatment in Ischemic Heart disease trial randomised 1212 patients with ischaemic left ventricular dysfunction to CABG or MED. A 6 min walk distance test was performed both at baseline and at least one follow-up assessment at 4, 12, 24 and/or 36 months in 409 patients randomised to CABG and 466 to MED. Change in 6 min walk distance between baseline and follow-up were compared by treatment allocation. Results: 6 min walk distance at baseline for CABG was mean 340±117 m and for MED 339±118 m. Change in walk distance from baseline was similar for CABG and MED groups at 4 months (mean +38 vs +28 m), 12 months (+47 vs +36 m), 24 months (+31 vs +34 m) and 36 months (−7 vs +7 m), P>0.10 for all. Change in walk distance between CABG and MED groups over all assessments was also similar after adjusting for covariates and imputation for missing values (+8 m, 95% CI −7 to 23 m, P=0.29). Results were consistent for subgroups defined by angina, New York Heart Association class ≥3, left ventricular ejection fraction, baseline walk distance and geographic region. Conclusion: In patients with ischaemic left ventricular dysfunction CABG compared with MED alone is known to reduce mortality but is unlikely to result in a clinically significant improvement in functional capacity

    FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    Full text link
    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.Comment: 5 pages, 13 figures, Proceedings of the 9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016), Lake Bled, Sloveni

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study

    Get PDF
    To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS).We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes.The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB.Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array

    Full text link
    The foreseen implementations of the Small Size Telescopes (SST) in CTA will provide unique insights into the highest energy gamma rays offering fundamental means to discover and under- stand the sources populating the Galaxy and our local neighborhood. Aiming at such a goal, the SST-1M is one of the three different implementations that are being prototyped and tested for CTA. SST-1M is a Davies-Cotton single mirror telescope equipped with a unique camera technology based on SiPMs with demonstrated advantages over classical photomultipliers in terms of duty-cycle. In this contribution, we describe the telescope components, the camera, and the trigger and readout system. The results of the commissioning of the camera using a dedicated test setup are then presented. The performances of the camera first prototype in terms of expected trigger rates and trigger efficiencies for different night-sky background conditions are presented, and the camera response is compared to end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348

    Development of a strategy for calibrating the novel SiPM camera of the SST-1M telescope proposed for the Cherenkov Telescope Array

    Full text link
    CTA will comprise a sub-array of up to 70 small size telescopes (SSTs) at the southern array. The SST-1M project, a 4 m-diameter Davies Cotton telescope with 9 degrees FoV and a 1296 pixels SiPM camera, is designed to meet the requirements of the next generation ground based gamma-ray observatory CTA in the energy range above 3 TeV. Silicon photomultipliers (SiPM) cameras of gamma-ray telescopes can achieve good performance even during high night sky background conditions. Defining a fully automated calibration strategy of SiPM cameras is of great importance for large scale production validation and online calibration. The SST-1M sub-consortium developed a software compatible with CTA pipeline software (CTApipe). The calibration of the SST-1M camera is based on the Camera Test Setup (CTS), a set of LED boards mounted in front of the camera. The CTS LEDs are operated in pulsed or continuous mode to emulate signal and night sky background respectively. Continuous and pulsed light data analysis allows us to extract single pixel calibration parameters to be used during CTA operation.Comment: All CTA contributions at arXiv:1709.0348

    Control Software for the SST-1M Small-Size Telescope prototype for the Cherenkov Telescope Array

    Full text link
    The SST-1M is a 4-m Davies--Cotton atmospheric Cherenkov telescope optimized to provide gamma-ray sensitivity above a few TeV. The SST-1M is proposed as part of the Small-Size Telescope array for the Cherenkov Telescope Array (CTA), the first prototype has already been deployed. The SST-1M control software of all subsystems (active mirror control, drive system, safety system, photo-detection plane, DigiCam, CCD cameras) and the whole telescope itself (master controller) uses the standard software design proposed for all CTA telescopes based on the ALMA Common Software (ACS) developed to control the Atacama Large Millimeter Array (ALMA). Each subsystem is represented by a separate ACS component, which handles the communication to and the operation of the subsystem. Interfacing with the actual hardware is performed via the OPC UA communication protocol, supported either natively by dedicated industrial standard servers (PLCs) or separate service applications developed to wrap lower level protocols (e.g. CAN bus, camera slow control) into OPC UA. Early operations of the telescope without the camera were already carried out. The camera is fully assembled and is capable to perform data acquisition using artificial light source.Comment: In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
    corecore