12 research outputs found
Recommended from our members
Pre-Steady State Kinetics of the NAD-Malic Enzyme from Ascaris suum in the Direction of Oxidative Decarboxylation of L-Malate
Stopped-flow experiments in which the NAD-malic enzyme was preincubated with different reactants at near saturating substrate concentrations suggest a slow isomerization of the E:NAD:Mg complex. The lag is eliminated by preincubation with Mg˙² and malate suggesting that the formation of E:Mg:Malate either bypasses or speeds up the slow isomerization step. Circular dichroic spectral studies of the secondary structural changes of the native enzyme in the presence and absence of substrates supports the existence of conformational changes with NAD˙ and malate. Thus, a slow conformational change of the E:NAD:Mg complex is likely one of the rate-limiting steps in the pre-steady state
Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments
The tetraspanin web is composed of a network of tetraspanins and their partner proteins that facilitate cellular interactions and fusion events by an unknown mechanism. Our aim was to unravel the web partnership between the tetraspanin CD81 and CD19, a cell surface signaling molecule in B lymphocytes. We found that CD81 plays multiple roles in the processing, intracellular trafficking, and membrane functions of CD19. Surprisingly, these different roles are embodied in distinct CD81 domains, which function in the different cellular compartments: the N-terminal tail of CD81 has an effect on the glycosylation of CD19; the first transmembrane domain of CD81 is sufficient to support the exit of CD19 from the endoplasmic reticulum, although the large extracellular loop (LEL) of CD81 associates physically with CD19 early during biosynthesis; and finally, the TM2 and TM3 domains of CD81 play a role in the transmission of signals initiated upon engagement of the LEL. The participation of distinct CD81 domains in varied functions may explain the pleiotropic effects of CD81 within the tetraspanin web
Recommended from our members
HGAL is a novel interleukin-4–inducible gene that strongly predicts survival in diffuse large B-cell lymphoma
We have cloned and characterized a novel human gene,HGAL (human germinal center–associated lymphoma), which predicts outcome in patients with diffuse large B-cell lymphoma (DLBCL). The HGAL gene comprises 6 exons and encodes a cytoplasmic protein of 178 amino acids that contains an immunoreceptor tyrosine-based activation motif (ITAM). It is highly expressed in germinal center (GC) lymphocytes and GC-derived lymphomas and is homologous to the mouse GC-specific gene M17. Expression of the HGAL gene is specifically induced in B cells by interleukin-4 (IL-4). Patients with DLBCL expressing high levels of HGAL mRNA demonstrate significantly longer overall survival than do patients with low HGAL expression. This association was independent of the clinical international prognostic index. High HGAL mRNA expression should be used as a prognostic factor in DLBCL
Idiotype Vaccination Using Dendritic Cells after Autologous Peripheral Blood Progenitor Cell Transplantation for Multiple Myeloma
The idiotype (Id) determinants on the multiple myeloma immunoglobulin can serve as tumor-specific antigens. An anti-Id immune response may stem the growth of the malignant clone. We report on 26 patients treated at our institution with high-dose chemotherapy and peripheral blood progenitor cell transplantation (PBPCT) and vaccinated with the Id protein. The patients received chemotherapy and PBPCT to establish a minimal residual disease state. After high-dose therapy, the patients received a series of monthly immunizations consisting of 2 intravenous infusions of dendritic cells (DCs) pulsed with either Id protein or Id coupled with keyhole limpet hemocyanin (KLH) as an immunogenic carrier protein, followed by subcutaneous boosts of Id-KLH conjugates. DCs were obtained in all patients from a leukapheresis product 3 to 9 months after PBPCT. Patients were observed for toxicity, immune responses, and tumor status. The DC infusions and the administration of Id-KLH boosts were well tolerated, with patients experiencing only minor and transient side effects. Of the patients, 24 of 26 generated a KLH-specific cellular proliferative immune response. Only 4 patients developed an Id-specific proliferative immune response. Three of these immune responders were in complete remission at the time of vaccination. A total of 17 patients are alive at a median follow-up of 30 months after transplantation. Id vaccination with autologous DCs is feasible for myeloma patients after transplantation. Id-specific cellular responses can be induced in patients who are in complete remission. Further studies are needed to increase the rate of anti-Id immune responses in patients who do not achieve complete remission
Idiotype Vaccination Using Dendritic Cells after Autologous Peripheral Blood Progenitor Cell Transplantation for Multiple Myeloma
The idiotype (Id) determinants on the multiple myeloma immunoglobulin can serve as tumor-specific antigens. An anti-Id immune response may stem the growth of the malignant clone. We report on 26 patients treated at our institution with high-dose chemotherapy and peripheral blood progenitor cell transplantation (PBPCT) and vaccinated with the Id protein. The patients received chemotherapy and PBPCT to establish a minimal residual disease state. After high-dose therapy, the patients received a series of monthly immunizations consisting of 2 intravenous infusions of dendritic cells (DCs) pulsed with either Id protein or Id coupled with keyhole limpet hemocyanin (KLH) as an immunogenic carrier protein, followed by subcutaneous boosts of Id-KLH conjugates. DCs were obtained in all patients from a leukapheresis product 3 to 9 months after PBPCT. Patients were observed for toxicity, immune responses, and tumor status. The DC infusions and the administration of Id-KLH boosts were well tolerated, with patients experiencing only minor and transient side effects. Of the patients, 24 of 26 generated a KLH-specific cellular proliferative immune response. Only 4 patients developed an Id-specific proliferative immune response. Three of these immune responders were in complete remission at the time of vaccination. A total of 17 patients are alive at a median follow-up of 30 months after transplantation. Id vaccination with autologous DCs is feasible for myeloma patients after transplantation. Id-specific cellular responses can be induced in patients who are in complete remission. Further studies are needed to increase the rate of anti-Id immune responses in patients who do not achieve complete remission
Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin
CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor
Depleting tumor-specific Tregs at a single site eradicates disseminated tumors
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti–CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response