98 research outputs found

    Update on Canine Idiopathic Pulmonary Fibrosis in West Highland White Terriers

    Get PDF
    Canine idiopathic pulmonary fibrosis (CIPF) is a chronic, progressive, interstitial lung disease (ILD) affecting older West Highland white terriers (WHWTs). According to one classification, CIPF is a familial fibrotic ILD in the group of idiopathic interstitial pneumonias. Etiology is unknown but likely arises from interplay between genetic and environmental factors. CIPF shares features with human idiopathic pulmonary fibrosis and human nonspecific interstitial pneumonia. This article describes clinical signs, findings in physical examination, arterial oxygenation, diagnostic imaging, bronchoscopy, bronchoalveolar lavage, histopathology, disease course, and outcome of WHWTs with CIPF; compares canine and human diseases; summarizes biomarker research; and gives an overview of potential treatment.Peer reviewe

    A Novel Interaction Network Used by Potyviruses in Virus–Host Interactions at the Protein Level

    Get PDF
    Host proteins that are central to infection of potyviruses (genus Potyvirus; family Potyviridae) include the eukaryotic translation initiation factors eIF4E and eIF(iso)4E. The potyviral genome-linked protein (VPg) and the helper component proteinase (HCpro) interact with each other and with eIF4E and eIF(iso)4E and proteins are involved in the same functions during viral infection. VPg interacts with eIF4E/eIF(iso)4E via the 7-methylguanosine cap-binding region, whereas HCpro interacts with eIF4E/eIF(iso)4E via the 4E-binding motif YXXXXLΊ, similar to the motif in eIF4G. In this study, HCpro and VPg were found to interact in the nucleus, nucleolus, and cytoplasm in cells infected with the potyvirus potato virus A (PVA). In the cytoplasm, interactions between HCpro and VPg occurred in punctate bodies not associated with viral replication vesicles. In addition to HCpro, the 4E-binding motif was recognized in VPg of PVA. Mutations in the 4E-binding motif of VPg from PVA weakened interactions with eIF4E and heavily reduced PVA virulence. Furthermore, mutations in the 4G-binding domain of eIF4E reduced interactions with VPg and abolished interactions with HCpro. Thus, HCpro and VPg can both interact with eIF4E using the 4E-binding motif. Our results suggest a novel interaction network used by potyviruses to interact with host plants via translation initiation factors

    A Novel Interaction Network Used by Potyviruses in Virus–Host Interactions at the Protein Level

    Get PDF
    Host proteins that are central to infection of potyviruses (genus Potyvirus; family Potyviridae) include the eukaryotic translation initiation factors eIF4E and eIF(iso)4E. The potyviral genome-linked protein (VPg) and the helper component proteinase (HCpro) interact with each other and with eIF4E and eIF(iso)4E and proteins are involved in the same functions during viral infection. VPg interacts with eIF4E/eIF(iso)4E via the 7-methylguanosine cap-binding region, whereas HCpro interacts with eIF4E/eIF(iso)4E via the 4E-binding motif YXXXXLΊ, similar to the motif in eIF4G. In this study, HCpro and VPg were found to interact in the nucleus, nucleolus, and cytoplasm in cells infected with the potyvirus potato virus A (PVA). In the cytoplasm, interactions between HCpro and VPg occurred in punctate bodies not associated with viral replication vesicles. In addition to HCpro, the 4E-binding motif was recognized in VPg of PVA. Mutations in the 4E-binding motif of VPg from PVA weakened interactions with eIF4E and heavily reduced PVA virulence. Furthermore, mutations in the 4G-binding domain of eIF4E reduced interactions with VPg and abolished interactions with HCpro. Thus, HCpro and VPg can both interact with eIF4E using the 4E-binding motif. Our results suggest a novel interaction network used by potyviruses to interact with host plants via translation initiation factors

    Effects of Bedding Material on Equine Lower Airway Inflammation : A Comparison of Two Peat Beddings, Wood Pellet, and Straw Pellet

    Get PDF
    The effects of bedding material on air quality are important amongst horses worldwide. Respiratory diseases, especially equine asthma, are highly prevalent with air hygiene playing a major role on the pathophysiology of these diseases. The objective of our study was to investigate the effects of four bedding materials on the respiratory signs, tracheal mucus score, and tracheal wash (TW) and bronchoalveolar lavage fluid (BALF) cytology in healthy adult horses. The study design was a prospective controlled cross-over study, and the subjects were healthy adult riding school horses (n = 32) from a single stable. Wood pellet, straw pellet, and loosely stored peat (Peat 3) were compared to peat packed in plastic-covered bales (Peat 2). Lower airway endoscopy and sampling (TW and BALF) for cytological examination were performed after each 35-day bedding period. The tracheal mucus scores (P = 0.014) and respiratory rate (P = 0.026) were higher during the straw pellet period compared to the Peat 2 period. The respiratory rate was lower during the wood pellet period compared to the Peat 2 period (P = 0.004). The TW neutrophil percentage during the straw pellet period was higher compared to the Peat 2 period (P = 0.0003). The BALF neutrophil percentage was higher during the straw pellet period (P = 0.005) and during the Peat 3 period compared to the Peat 2 period (P = 0.04). We conclude that baled peat (Peat 2) caused lower neutrophil percentages in the airway samples compared to straw pellet and loosely stored peat (Peat 3). No difference was observed between Peat 2 and wood pellet. The information gained from this study may assist veterinarians and horse owners in selecting appropriate bedding materials, especially for horses with equine asthma.Peer reviewe

    Identification of matrix metalloproteinase-2 and-9 activities within the intestinal mucosa of dogs with chronic enteropathies

    Get PDF
    Background: Matrix metalloproteinases (MMPs) 2 and 9 are zinc-and calcium-dependent endopeptidases involved in the breakdown and reconstitution of extracellular matrix under both physiological and pathological conditions. Mucosal MMP-2 and -9 activities have been reported to be upregulated in the intestine of humans with inflammatory bowel disease (IBD), and in animal models of IBD. However, their involvement in the pathogenesis of canine chronic enteropathies (CE) is unknown. This study investigated mucosal pro-and active MMP-2 and -9 activities in dogs with CE and healthy dogs using gelatin zymography, and also to determine the association of their activities in dogs with CE with the canine IBD activity index (CIBDAI), histopathologic findings, the clinical outcome, and hypoalbuminemia. Intestinal mucosal samples from duodenum, ileum, colon, and cecum were collected from 40 dogs with CE and 18 healthy Beagle dogs. Results: In dogs with CE, the number of samples positive for mucosal pro-and active MMP-2 was significantly higher in the duodenum (P <0.0001 and P = 0.011, respectively), ileum (P = 0.002 and P = 0.018, respectively), and colon (P <0.0001 and P = 0.002, respectively), compared with healthy controls. Mucosal pro-MMP-9-positive samples in the duodenum and colon were significantly more frequent in dogs with CE than in healthy dogs (P = 0.0004 and P = 0.001, respectively). Despite the presence of mucosal samples positive for active MMP-9 in the intestinal segments of dogs with CE, the difference compared to healthy controls did not reach statistical significance. None of the intestinal mucosal samples in healthy dogs showed gelatinolytic activity corresponding to the control bands of active MMP-2 and -9. Mucosal active MMP-9 activities displayed a significant positive association with the severity of neutrophil infiltration in the duodenum (P = 00.040), eosinophils in the cecum (P = 00.037), and the CIBDAI score for ileum samples (P = 0.023). There was no significant association of pro-and active MMP-2 and -9 levels with the clinical outcome or hypoalbuminemia. Conclusions: This study is the first to demonstrate upregulation of mucosal pro-and active MMP-2 and pro-MMP-9 in the intestine of dogs with CE compared to healthy dogs. The results provide supporting evidence for the possible involvement of MMP-2 and -9 in the pathogenesis of canine CE.Peer reviewe

    Nuclear proteome of virus-infected and healthy potato leaves

    Get PDF
    Abstract Background Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. Results In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography–coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2–108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing–related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. Conclusions Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection

    Differential Requirement of the Ribosomal Protein S6 and Ribosomal Protein S6 Kinase for Plant-Virus Accumulation and Interaction of S6 Kinase with Potyviral VPg

    Get PDF
    Ribosomal protein S6 (RPS6) is an indispensable plant protein regulated, in part, by ribosomal protein S6 kinase (S6K) which, in turn, is a key regulator of plant responses to stresses and developmental cues. Increased expression of RPS6 was detected in Nicotiana benthamiana during infection by diverse plant viruses. Silencing of the RPS6and S6K genes in N. benthamiana affected accumulation of Cucumber mosaic virus, Turnip mosaic virus (TuMV), and Potato virus A (PVA) in contrast to Turnip crinkle virus and Tobacco mosaic virus. In addition, the viral genome-linked protein (VPg) of TuMV and PVA interacted with S6K in plant cells, as detected by bimolecular fluorescence complementation assay. The VPg–S6K interaction was detected in cytoplasm, nucleus, and nucleolus, whereas the green fluorescent protein-tagged S6K alone showed cytoplasmic localization only. These results demonstrate that the requirement for RPS6 and S6K differs for diverse plant viruses with different translation initiation strategies and suggest that potyviral VPg–S6K interaction may affect S6K functions in both the cytoplasm and the nucleus

    Comparison of Tracheal Wash and Bronchoalveolar Lavage Cytology in 154 Horses With and Without Respiratory Signs in a Referral Hospital Over 2009−2015

    Get PDF
    Most equine lower respiratory diseases present as increased airway neutrophilia, which can be detected in tracheal wash (TW) or bronchoalveolar lavage fluid (BALE) cytology samples. The aim was to compare the TW and BALF results in a population of client-owned horses with and without clinical respiratory disease signs. A secondary aim was to determine the sensitivity (Se) and specificity (Sp) of TW and BALF neutrophilia in detecting respiratory disease. The cutoff values for neutrophils were also evaluated. Retrospective data from 154 horses of various breeds that had been subject to both TW and bronchoalveolar lavage (BAL) sampling at rest during 2009-2015 were used. The horses were divided into three groups based on the presenting signs, physical examination, and endoscopy mucus score. Neutrophil counts of >20% in TW and >5% in BAL were considered abnormal. Cytology results between groups, correlations between 1W and BALF cell types, and tracheal mucus score were analyzed. Two graph receiving operating characteristic (ROC) curves of the neutrophil percentage values of TW and BALF were created to determine the optimal cutoff values and to calculate the diagnostic Se and Sp for diagnosing airway inflammation in horses with and without clinical respiratory signs. The Se and Sp of TW and BALF neutrophil percentages were further estimated using a two-test one-population Bayesian latent class model. The two tests showed substantial agreement, and only 17.5% of the horses were classified differently (healthy vs. diseased). The neutrophil percentage was found to correlate between TW and BALF. The Se and Sp of TW were generally higher than for BAL when estimated with area under the curve or Bayesian model. Cutoff values of 17.7% for TW and 7% for BALF were indicated by the ROCs. We conclude that TW is a more sensitive and specific method in our patient population. We suggest that the current neutrophil cutoff values of 20% for 1W and 5% for BALE would still be appropriate to use in clinical diagnosis of airway inflammation. However, further studies with other cell types and in other populations are warranted to determine the best sampling method for individual horses.Peer reviewe
    • 

    corecore