3 research outputs found

    Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition.

    Get PDF
    Hypothalamospinal control of spinal pain processing by oxytocin (OT) has received a lot of attention in recent years because of its potency to reduce pain symptoms in inflammatory and neuropathic conditions. However, cellular and molecular mechanisms underlying OT spinal antinociception are still poorly understood. In this study, we used biochemical, electrophysiological, and behavioral approaches to demonstrate that OT levels are elevated in the spinal cord of rats exhibiting pain symptoms, 24 h after the induction of inflammation with an intraplantar injection of λ-carrageenan. Using a selective OT receptor antagonist, we demonstrate that this elevated OT content is responsible for a tonic analgesia exerted on both mechanical and thermal modalities. This phenomenon appeared to be mediated by an OT receptor-mediated stimulation of neurosteroidogenesis, which leads to an increase in GABA(A) receptor-mediated synaptic inhibition in lamina II spinal cord neurons. We also provide evidence that this novel mechanism of OT-mediated spinal antinociception may be controlled by extracellular signal-related protein kinases, ERK1/2, after OT receptor activation. The oxytocinergic inhibitory control of spinal pain processing is emerging as an interesting target for future therapies since it recruits several molecular mechanisms, which are likely to exert a long-lasting analgesia through nongenomic and possibly genomic effects.journal articleresearch support, non-u.s. gov't2013 Oct 16importe

    Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits

    No full text
    GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. They are expressed in almost all neurons of the brain, where they regulate synaptic transmission and signal propagation by controlling the activity of voltage-gated calcium (Ca(v)) and inward-rectifier potassium (K(ir)) channels. Molecular cloning revealed that functional GABA(B) receptors are formed by the heteromeric assembly of GABA(B1) with GABA(B2) subunits. However, cloned GABA(B(1,2)) receptors failed to reproduce the functional diversity observed with native GABA(B) receptors. Here we show by functional proteomics that GABA(B) receptors in the brain are high-molecular-mass complexes of GABA(B1), GABA(B2) and members of a subfamily of the KCTD (potassium channel tetramerization domain-containing) proteins. KCTD proteins 8, 12, 12b and 16 show distinct expression profiles in the brain and associate tightly with the carboxy terminus of GABA(B2) as tetramers. This co-assembly changes the properties of the GABA(B(1,2)) core receptor: the KCTD proteins increase agonist potency and markedly alter the G-protein signalling of the receptors by accelerating onset and promoting desensitization in a KCTD-subtype-specific manner. Taken together, our results establish the KCTD proteins as auxiliary subunits of GABA(B) receptors that determine the pharmacology and kinetics of the receptor response
    corecore