100 research outputs found

    Probing the loss origins of ultra-smooth Si3N4\mathrm{Si_3N_4} integrated photonic waveguides

    Full text link
    On-chip optical waveguides with low propagation losses and precisely engineered group velocity dispersion (GVD) are important to nonlinear photonic devices such as soliton microcombs. Yet, despite intensive research efforts, nonlinear integrated photonic platforms still feature propagation losses orders of magnitude higher than in standard optical fiber. The tight confinement and high index contrast of integrated waveguides make them highly susceptible to fabrication induced surface roughness. Therefore, microresonators with ultra-high Q factors are, to date, only attainable in polished bulk crystalline, or chemically etched silica based devices, that pose however challenges for full photonic integration. Here, we demonstrate the fabrication of silicon nitride (Si3N4\mathrm{Si_3N_4}) waveguides with unprecedentedly smooth sidewalls and tight confinement with record low propagation losses. This is achieved by combining the photonic Damascene process with a novel reflow process, which reduces etching roughness, while sufficiently preserving dimensional accuracy. This leads to previously unattainable \emph{mean} microresonator Q factors larger than 5Ă—1065\times10^6 for tightly confining waveguides with anomalous dispersion. Via systematic process step variation and two independent characterization techniques we differentiate the scattering and absorption loss contributions, and reveal metal impurity related absorption to be an important loss origin. Although such impurities are known to limit optical fibers, this is the first time they are identified, and play a tangible role, in absorption of integrated microresonators. Taken together, our work provides new insights in the origins of propagation losses in Si3N4\mathrm{Si_3N_4} waveguides and provides the technological basis for integrated nonlinear photonics in the ultra-high Q regime

    Advancements in distributed ledger technology for Internet of Things

    Get PDF
    Internet of Things (IoT) is paving the way for different kinds of devices to be connected and properly communicated at a mass scale. However, conventional mechanisms used to sustain security and privacy cannot be directly applied to IoT whose topology is increasingly becoming decentralized. Distributed Ledger Technologies (DLT) on the other hand comprise varying forms of decentralized data structures that provide immutability through cryptographically linking blocks of data. To be able to build reliable, autonomous and trusted IoT platforms, DLT has the potential to provide security, privacy and decentralized operation while adhering to the limitations of IoT devices. The marriage of IoT and DLT technology is not very recent. In fact many projects have been focusing on this interesting combination to address the challenges of smart cities, smart grids, internet of everything and other decentralized applications, most based on blockchain structures. In this special issue, the focus is on the new and broader technical problems associated with the DLT-based security and backend platform solutions for IoT devices and applications.WOS:000695693900012Scopus - Affiliation ID: 60105072Science Citation Index ExpandedArticleUluslararası işbirliği ile yapılan - EVETMart2020YÖK - 2019-2

    Nanophotonic soliton-based microwave synthesizers

    Full text link
    Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks

    Entanglement swapping between independent and asynchronous integrated photon-pair sources

    Full text link
    Integrated photonics represents a technology that could greatly improve quantum communication networks in terms of cost, size, scaling, and robustness. A key benchmark for this is to demonstrate their performance in complex quantum networking protocols, such as entanglement swapping between independent photon-pair sources. Here, using time-resolved detection, and two independent and integrated Si3_3N4_4 microring resonator photon-pair sources, operating in the CW regime at telecom wavelengths, we obtained spectral purities up to 0.97±0.020.97 \pm 0.02 and a HOM interference visibility between the two sources of VHOM=93.2±1.6 %V_{\rm HOM}=93.2 \pm 1.6\,\%. This results in entanglement swapping visibility as high as $91.2 \pm 3.4\,\%

    High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits

    Full text link
    Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these results into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in fabrication of integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators can be attained at die-level throughput. For emerging nonlinear applications such as integrated travelling-wave parametric amplifiers and mode-locked lasers, PICs of length scales of up to a meter are required, placing stringent demands on yield and performance that have not been met with current fabrication techniques. Here we overcome these challenges and demonstrate a fabrication technology which meets all these requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 million, corresponding to a linear propagation loss of 1.0 dB/m, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances and cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB/m loss in dies of only 5x5 mm size. Using a modulation response measurement self-calibrated via the Kerr nonlinearity, we reveal that, strikingly, the intrinsic absorption-limited Q factor of our Si3N4 microresonators exceeds a billion. Transferring the present Si3N4 photonics technology to standard commercial foundries, and merging it with silicon photonics using heterogeneous integration technology, will significantly expand the scope of today's integrated photonics and seed new applications
    • …
    corecore