2 research outputs found

    Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    Full text link
    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails,which also includes cone snails and turrids. Characterization of cone snail venompeptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homologybased searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, suchas actinoporin, commonly foundinvenoms. This research provides novel insights intovenomevolutionandrecruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution
    corecore