4,752 research outputs found
Thermal Expansion Behavior of Hot-Pressed Engineered Matrices
Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept
Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al
The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys
Stress versus temperature dependent activation energies in creep
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt
Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings
Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures
Writing as a Therapeutic Agent for Collective Healing in the Poems of Tensin Tsundue
Almost all people experience trauma in their life. Surviving in the era that has witnessed a lot of trauma, a millennium composed of two world wars and cold wars, has made every human being experience chains of trauma. Traumatic problems affect a person mentally and physically. There is a long history of human associating himself through a way or therapy to find himself out of the Post Traumatic Stress Disorders (PTSD). This paper projects the importance of writing that serves as a therapy, with the backdrop of the Tibetan writer Tensin Tsundue. Tibet at present undergoes the tough situations due to the Chinese invasion and Tibetans are mostly away from their homeland and staying as refugees in other countries. Tensin Tsundue is a Tibetan activist and writer, and his works bring out the reality of the Tibetan struggle, where his poems stand as a placard for the readers to identify the lost identity of Tibetans. This paper brings out the importance of writing as a therapy to overcome the traumatic stress, and it analyses how an individual writing brings the impact of collective healing into action
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade
Optimal Control Theory for Continuous Variable Quantum Gates
We apply the methodology of optimal control theory to the problem of
implementing quantum gates in continuous variable systems with quadratic
Hamiltonians. We demonstrate that it is possible to define a fidelity measure
for continuous variable (CV) gate optimization that is devoid of traps, such
that the search for optimal control fields using local algorithms will not be
hindered. The optimal control of several quantum computing gates, as well as
that of algorithms composed of these primitives, is investigated using several
typical physical models and compared for discrete and continuous quantum
systems. Numerical simulations indicate that the optimization of generic CV
quantum gates is inherently more expensive than that of generic discrete
variable quantum gates, and that the exact-time controllability of CV systems
plays an important role in determining the maximum achievable gate fidelity.
The resulting optimal control fields typically display more complicated Fourier
spectra that suggest a richer variety of possible control mechanisms. Moreover,
the ability to control interactions between qunits is important for delimiting
the total control fluence. The comparative ability of current experimental
protocols to implement such time-dependent controls may help determine which
physical incarnations of CV quantum information processing will be the easiest
to implement with optimal fidelity.Comment: 39 pages, 11 figure
Thermal Expansion of Vacuum Plasma Sprayed Coatings
Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed
- …