22 research outputs found

    A comparative study on different BMI category and physical fitness health related component of sedentary male youth in Terengganu

    Get PDF
    This study aims to compare the physical fitness health related component on three different BMI category (underweight-UG; normal-NG and obese-OG) of sedentary male youth in Terengganu. 223 sedentary male youth of Terengganu (age 17.4±1.9) categorize into three groups based on BMI index value. Five physical fitness health related component (VO2max, one minute sit up and push up, V sit and reach and 20 meter speed) are measured in all groups. Multivariate Analysis of variance revealed that there is significant different between three BMI groups on physical fitness health related components F (10, 434) = 6.24, P < 0.0001. Thus, the current study shows an evidence to improve health, enhancement in each physical fitness health related components must be concentrated instead of correcting BMI alone.Keywords: BMI; physical fitness health related; obesit

    Universal DNA methylation age across mammalian tissues

    Get PDF
    DATA AVAILABILITY STATEMENT : The individual-level data from the Mammalian Methylation Consortium can be accessed from several online locations. All data from the Mammalian Methylation Consortium are posted on Gene Expression Omnibus (complete dataset, GSE223748). Subsets of the datasets can also be downloaded from accession numbers GSE174758, GSE184211, GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, GSE174544, GSE190665, GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, GSE147003, GSE147004, GSE223943 and GSE223944. Additional details can be found in Supplementary Note 2. The mammalian data can also be downloaded from the Clock Foundation webpage: https://clockfoundation.org/MammalianMethylationConsortium. The mammalian methylation array is available through the non-profit Epigenetic Clock Development Foundation (https://clockfoundation.org/). The manifest file of the mammalian array and genome annotations of CpG sites can be found on Zenodo (10.5281/zenodo.7574747). All other data supporting the findings of this study are available from the corresponding author upon reasonable request. The chip manifest files, genome annotations of CpG sites and the software code for universal pan-mammalian clocks can be found on GitHub95 at https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0. The individual R code for the universal pan-mammalian clocks, EWAS analysis and functional enrichment studies can be also found in the Supplementary Code.SUPPLEMENTARY MATERIAL 1 : Supplementary Tables 1–3 and Notes 1–6.SUPPLEMENTARY MATERIAL 2 : Reporting SummarySUPPLEMENTARY MATERIAL 3 : Supplementary Data 1–14.SUPPLEMENTARY MATERIAL 4 : Supplementary Code.Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.https://www.nature.com/nataginghj2024Zoology and EntomologySDG-15:Life on lan

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Injection‐locked oscillator lock detector

    No full text

    Deadenylation of interferon-beta mRNA is mediated by both the AU-rich element in the 3'-untranslated region and an instability sequence in the coding region.

    No full text
    Viral infection of fibroblastic and endothelial cells leads to the transient synthesis of interferon-beta (IFN-beta). The down-regulation of IFN-beta synthesis after infection results both from transcriptional repression of the IFN-beta gene and rapid degradation of mRNA. As with many cytokine mRNAs, IFN-beta mRNA contains an AU-rich element (ARE) in its 3'-untranslated region (UTR). AREs are known to mediate mRNA deadenylation and destabilization. Depending on the class of ARE, deadenylation was shown to occur through synchronous or asynchronous mechanisms. In this study, we analysed IFN-beta mRNA deadenylation in natural conditions of IFN-beta synthesis, e.g. after viral infection. We show that human IFN-beta mRNA follows an asynchronous deadenylation pathway typical of a mRNA containing a class II ARE. A deletion analysis of the IFN-beta natural transcript demonstrates that poly(A) shortening can be mediated by the ARE but also by a 32 nucleotide-sequence located in the coding region, that was identified previously as an instability determinant. In fact, these elements are able to act independently as both of them have to be removed to abrogate mRNA deadenylation. Our data also indicate that deadenylation occurs independently of mRNA translation. Moreover, we show that deadenylation of IFN-beta mRNA is not under the control of viral infection as IFN-beta mRNA derived from a constitutively expressed gene cassette is deadenylated in absence of viral infection. Finally, an unidentified nuclear event appears to be a prerequisite for IFN-beta mRNA deadenylation as IFN-beta mRNA introduced directly into the cytoplasm does not undergo deadenylation. In conclusion, our study demonstrates that IFN-beta mRNA poly(A) shortening is under the control of two cis-acting elements recruiting a deadenylating machinery whose activity is independent of translation and viral infection but might require a nuclear event.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore