78 research outputs found

    Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system

    Get PDF
    A CaO-supported ZnWO4 nanocomposite (ZnWO4/CaO) was successfully synthesized using a novel hydrothermal method and was characterized by scanning electron microscopy (SEM), tunnelling electron microscopy (TEM), X-ray diffraction (XRD), electron diffraction X-ray (EDX), Fourier transform infrared spectroscopy (FTIR) and UV–visible (UV–vis) spectral analysis. The ZnWO4/CaO composites exhibited rod-like morphologies with variable lengths from 45 nm to 147 nm and diameters from 26 nm to 36 nm. The catalytic efficiency of the synthesized ZnWO4/CaO composites was displayed for the photodegradation of oxytetracycline (OTC) antibiotic from the aqueous phase. The synergistic degradation of OTC was investigated in the presence of H2O2 and ZnWO4/CaO. The rate of photodegradation followed pseudo-first-order kinetics. The antibiotic removal was strongly influenced by the catalyst loading, H2O2 concentration, pH and OTC concentration. Using a solar/H2O2/ZnWO4/CaO catalytic system, 85% COD removal was attained for OTC degradation in 210 min. The oxidative degradation occurred through hydroxyl radicals. The prepared nanocomposites possessed high recyclability and were easily separated from the aqueous solution by a simple sedimentation process

    Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N4 for efficient phenol degradation

    Get PDF
    Advances in noble metal mediated Z-scheme photocatalytic system have ushered in a climax on environmental remediation. Herein, graphitic carbon nitride (GCN) and phosphorus sulphur co-doped graphitic carbon nitride (PSCN) were synthesized via calcination process. GCN, PSCN and Z-scheme visible light driven (VLD) ternary BiOBr/PSCN/Ag/AgCl nanophotocatalyst were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–visible diffuse reflectance spectra (UV–vis DRS). BiOBr/PSCN/Ag/AgCl nanocomposite exhibited superior visible light driven photocatalytic ability as compared to pristine PSCN, AgCl and BiOBr towards degradation of phenol. The results explicated promising photocatalytic activity along with space separation of photocarriers caused via formation of BiOBr/PSCN/Ag/AgCl Z-scheme heterojunction. The visible light absorption efficacy of BiOBr/PSCN/Ag/AgCl photocatalyst was confirmed by photoluminescence (PL) spectra. Finally, recycling experiments were explored for the mechanistic detailing of phenol photodegradation employing BiOBr/PSCN/Ag/AgCl photocatalyst. After seven successive cycles photodegradation efficacy of photocatalyst was reduced to 90% from 98%. Proposed mechanism of BiOBr/PSCN/Ag/AgCl nanophotocatalyst for degradation of phenol was discussed. OH and O2− radicals were main reactive species responsible for photocatalytic phenol degradation

    Magnetically separable ZnO/ZnFe204 and ZnO/CoFe204 photocatalysis supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes

    Get PDF
    Advanced oxidation processes (AOPs) counting heterogeneous photocatalysis has confirmed as one of the preeminent method for waste water remediation. In the present work, we have successfully fabricated novel visible-light-driven nitrogen-doped graphene (NG) supported magnetic ZnO/ZnFe2O4 (ZnO/ZF/NG) and ZnO/CoFe2O4 (ZnO/CF/NG) nanocomposites. ZnO synthesized via direct precipitation method. Hydrothermal method was used for the preparation of nitrogen-doped graphene supported magnetic ZnO/ZF (ZnO/ZnFe2O4) and ZnO/CF (ZnO/CoFe2O4) nanocomposites. The procured materials were scrutinized by assorted characterizations to acquire information on their chemical composition, crystalline structure and photosensitive properties. The absorption and photocatalytic performance of photocatalysts were studied via UV–Visible spectra. Photodegradation performance of the synthesized nanocomposites was estimated toward mineralization of methyl orange (MO) and malachite green (MG) dyes in aqueous solution. The high surface area of ZnO/ZF/NG and ZnO/CF/NG was suitable for adsorptive removal of MO and MG dyes. The photodegradation performance of heterojunction photocatalysts was superior to bare photocatalyst in 140 min under visible-light irradiation. Spectrophotometer, GC–MS (Gas chromatography–mass spectrometry) elucidation was carried out to expose the possible intermediates formed. Both ZnO/ZF/NG and ZnO/CF/NG were rapidly isolated from the aqueous phase by applying an external magnetic field in 20 sec and 2 min, respectively. The photocatalytic performance and stability of ZnO/ZF/NG and ZnO/CF/NG nanocomposites were confirmed by conducting 10 consecutive regeneration cycles. Owing to recyclability of ZnO/ZF/NG and ZnO/CF/NG, these heterogeneous nanocomposites might be used as cost-effective for treatment of discarded water. The observations endorse that the synthesized ternary heterogeneous nanocomposites facilitates wastewater decontamination using photocatalytic technology

    Systematic review on applicability of magnetic iron-oxides integrated photocatalysts for degradation of organic pollutants in water

    No full text
    Owing to biocompatibility, abundance, and low cost, magnetic iron oxides are well suited for the design of efficient and magnetically separable photocatalysts for water treatment. This review presents a detailed survey of magnetic iron oxide–integrated photocatalysts (MIOIPs), in which we have discussed essential conditions needed for designing of efficient MIOIPs for water purification. The synthesis methods and detailed experimental setups for fabrication of MIOIPs were discussed, and the integration manners of iron oxides (Fe2O3, Fe3O4, FeO, and ferrites) with binary, ternary, and quaternary non-magnetic photocatalysts have been categorized. The mechanistic view of enhanced photocatalytic activity caused by different MIOIPs under various light sources was also elaborately argued. The role of various reactive species in photocatalytic oxidative degrading of organic pollutants was investigated. Altogether, this review article has compressively considered and discussed various signs of advancements made toward the synthesis of MIOIPs and their stability, recyclability, and catalytic efficacy for wastewater treatment

    Photocatalytic inactivation of viruses using graphitic carbon nitride-based photocatalysts:Virucidal performance and mechanism

    Get PDF
    The prevalence of lethal viral infections necessitates the innovation of novel disinfection techniques for contaminated surfaces, air, and wastewater as significant transmission media of disease. The instigated research has led to the development of photocatalysis as an effective renewable solar-driven technology relying on the reactive oxidative species, mainly hydroxyl (OH●) and superoxide (O2●−) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. Metal-free graphitic carbon nitride (g-C3N4), which possesses a visible light active bandgap structure, low toxicity, and high thermal stability, has recently attracted attention for viral inactivation. In addition, g-C3N4-based photocatalysts have also experienced a renaissance in many domains, including environment, energy conversion, and biomedical applications. Herein, we discuss the three aspects of the antiviral mechanism, intending to highlight the advantages of photocatalysis over traditional viral disinfection techniques. The sole agenda of the review is to summarize the significant research on g-C3N4-based photocatalysts for viral inactivation by reactive oxidative species generation. An evaluation of the photocatalysis operational parameters affecting viral inactivation kinetics is presented. An overview of the prevailing challenges and sustainable solutions is presented to fill in the existing knowledge gaps. Given the merits of graphitic carbon nitride and the heterogeneous photocatalytic viral inactivation mechanism, we hope that further research will contribute to preventing the ongoing Coronavirus pandemic and future calamities

    Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review

    Get PDF
    Semiconductor photocatalyst mediated advanced oxidation processes are regarded as one of the most efficient technologies to mitigate organic pollutants in water. However, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder large scale applicability of semiconductor photocatalysts for water purification. The modification of semiconductor photocatalysts with carbon quantum dots (CQDs) is of high importance due to low toxicity, aqueous stability, enhanced surface area, economic feasibility, good biocompatibility and chemical inertness of CQDs. In this review, we highlight strategies to improve the activity of conventional semiconductor photocatalysts via coupling with CQDs. The enhanced photocatalytic activity of CQD modified narrow and wide band gap photocatalysts is due mainly to up-conversion photoluminescence (UPCL) and the electron reservoir properties of CQDs, while in the case of Z-scheme photocatalysts CQDs act as an electron mediator. Finally, a conclusive outlook and suggested research directions are provided to address challenges such as the inadequate separation of photoinduced charge carriers

    Synthesis of Eu3+−doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets for visible light-assisted degradation of 2,4-dimethyl phenol and bacteria killing

    Get PDF
    We reported the immobilization of binary heterojunction Eu3+-ZnO/Bi2O3 over the surface of graphene oxide (GO) sheets by precipitation method to compose a visible light drive photocatalyst. The ternary nanocomposites were characterized by different spectral technique like FESEM, FTIR, XRD, XPS, EDX, HRTEM, UV–visible, PL, HPLC and LCMS analysis. The high specific surface area of 106.0 m2g-1 of Eu3+-ZnO/Bi2O3/GO nanocomposites was ascertained by BET adsorption-desorption isotherm. The nano-composite exhibit excellent photo-efficiency for the photodegradation of 2, 4-dimethyl phenol (DMP) under visible region and was almost completely mineralized in 100 min as compared to the bare and binary system. The mineralized products of DMP were analyzed by HPLC and LCMS analysis. The kinetic model suggests the degradation pathway obeys pseudo-first order kinetic. Their antibacterial property were assessed against E. coli bacteria and nearly 90% of gram negative bacteria were killed by using ternary photocatalyst as determined by CFU method. Also, Eu3+-ZnO/Bi2O3/GO nanocomposites possessed significant recycle efficiency up to six consecutive cycles which is beneficial to minimize the tariff. The improved photo-efficiency is due to the extension towards visible region, increase surface area, and high charge separation in ternary heterojunction

    Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review

    Get PDF
    Extensive contamination of water bodies by textile dyeing industries, organic pollutants and agricultural waste has emerged water pollution as one of the major global environmental crisis. The effect of this gross negligence is posing serious threats to human health therefore today; conserving water resources for the essence of life is of grave concern. Recently, advancements in photocatalytic properties of graphitic carbon nitride (g-C3N4) for wastewater treatment have gained tremendous interest in research. However, pristine g-C3N4 suffers from bottlenecks such as low surface area, rapid recombination of photo-generated electron–hole pairs and insufficient light absorption which thereby, reduces the photocatalytic degradation activity. Hitherto, noble metals have been widely utilized as dopants but are cost ineffective, rarely found and are difficult to recover. In this updated and all-inclusive review we have briefly discussed photocatalysis mechanism, primarily focused on non-precious elemental doping via various synthesis techniques of noble metal free doped g-C3N4 photocatalysts. Typically metal, non-metal, rare earth metal doping and co-doping have been explored, which demonstrates the synergistic behavior of the doped nanocomposites in modulation of electronic structure, broaden the visible light absorption range, enhancement in photocatalytic wastewater remediation ability to obtain maximum pollutant eradication. Summary remarks conclude the review with valuable knowledge of noble metal free doped g-C3N4 photocatalysts for water purification and sheds light on current challenges and crucial issues associated with its commercialization. The future aspect aims at designing of efficient solar light driven photocatalysts for application in various domains i.e. production of H2 and O2, reduction of CO2, practical use of solar cells, treatment of wastewater, air purification and environmental conservatio
    • …
    corecore