1	Synthesis of Eu ³⁺⁻ doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets
2	for visible light-assisted degradation of 2,4-dimethyl phenol and bacteria killing
3	Pooja Shandilya ^{a,b} , Anita Sudhaik ^a , Pankaj Raizada ^{a,b} , Ahmad Hosseini-Bandegharaei ^{c,d} ,
4	Pardeep Singh ^{a*} , Abolfazl Rahmani-Sani ^{c,**} Vijay Thakur ^{e***}
5	^a Schoolof Chemistry, Faculty of Basic Sciences, Shoolini University, Solan(HP)-173229, India
6	^b Himalayan Centre for Excellence in Nanotechnology, Shoolini University. Solan (HP) India-
7	173229
8	^c Department of Environmental Health Engineering, Faculty of Health, Sabzevar University of
9	Medical Sciences, Sabzevar, Iran
10	^d Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar,
11	Iran
12	eEnhanced Composites and Structures Center, School of Aerospace, Transport and
13	Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
14	
15	Email: *pardeepchem@gmail.com, **rahmani240@gmail.com),
16	***vijay.kumar@cranfield.ac.uk
17	
18	
19	
20	

21 Abstract

22 We reported the immobilization of binary heterojunction Eu³⁺-ZnO/Bi₂O₃ over the surface of 23 graphene oxide (GO) sheets by precipitation method to compose a visible light drive photocatalyst. The ternary nanocomposites were characterized by different spectral technique like FESEM, FTIR, 24 XRD, XPS, EDX, HRTEM, UV-visible, PL, HPLC and LCMS analysis. The high specific surface 25 area of 106.0 m²g⁻¹ of Eu³⁺-ZnO/Bi₂O₃/GO nanocomposites was ascertained by BET adsorption-26 desorption isotherm. The nano-composite exhibit excellent photo-efficiency for the 27 28 photodegradation of 2, 4-dimethyl phenol (DMP) under visible region and was almost completely mineralized in 100 min as compared to the bare and binary system. The mineralized products of 29 DMP were analyzed by HPLC and LCMS analysis. The kinetic model suggests the degradation 30 31 pathway obeys pseudo-first order kinetic. Their antibacterial property were assessed against E. coli bacteria and nearly 90% of gram negative bacteria were killed by using ternary photocatalyst as 32 determined by CFU method. Also, Eu³⁺-ZnO/Bi₂O₃/GO nanocomposites possessed significant 33 recycle efficiency up to six consecutive cycles which is beneficial to minimize the tariff. The 34 improved photo-efficiency is due to the extension towards visible region, increase surface area, 35 and high charge separation in ternary heterojunction. 36

Keywords: Eu³⁺doped ZnO; Bi2O3; Heterojunction formation; Enhanced photo-catalysis; 2,4 dimethylphenol degradation; Antibacterial activity

39

40

Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0). The final published version (version of record) is available online at DOI:10.1016/j.solidstatesciences.2020.106164. Please refer to any applicable publisher terms of use.

42 Introduction

Phenols and their derivative is a primary pollutant released by the various industries like 43 44 paint, textiles, paper, plastics, petroleum refining and pharmaceutical industries etc. [1]. The 45 existence of phenolic compounds in waste water need to be eliminated as it brings a lots of harmful effects on human health and aquatic life. To address this, advanced oxidation processes (AOPs) 46 47 have found a valuable potential for the degradation of various pollutant in aqueous suspension [2]. Amongst, AOP's process employed for the organic pollutants degradation, visible light assisted 48 photocatalysis is of the most appropriate ones, owning to its several advantages like 49 inexpensiveness and effectiveness. Among the various semiconductors used for photocatalytic 50 processes, zinc oxide (ZnO) has emerged as a suitable catalyst for photocatalytic degradation and 51 mineralization of various organic and inorganic contaminants [3]. The excellence of ZnO is due to 52 its strong oxidizing power and low cost which makes it a favorable candidate to carry out 53 photocatalytic oxidation processes occurring in water media [4]. On exposure to solar light with 54 energy higher or equal to the band gap of ZnO semiconductor, generation of electron-hole pair 55 takes place. The generated electrons reacts with O_2 to form superoxide radicals (O_2) and 56 meanwhile, the holes reacts with H_2O or OH^- ions to produce hydroxyl radicals ('OH) [5, 6]. 57 Owing to strong oxidizing ability, 'OH and O_2 ' degraded the pollutant and convert them into H_2O_2 58 59 and CO_2 [7]. However, ZnO is only active under UV light, and it also suffers from re-combination 60 of charge carrier produced during photocatalysis [8]. To overcome these drawbacks of ZnO and similar semiconductors, till now, two main strategy have been employed: (i) doping with cationic, 61 anionic or rare earth elements and (ii) the construction of heterojunction with other semiconductors 62 [9–11]. These strategy aims to enhance the stability, photocatalytic efficacy and expand the 63 absorption of light in visible range. Nowadays, doping with a rare earth element, like Ln³⁺ ion, has 64

been revealed that can cause improvement in the ZnO photocatalytic activity [10]. Khataee *et al.*prepared Eu³⁺ doped ZnO nanoparticles by using the sonochemical method and was exploited for
the photo-degradation of acid orange dye [10]. Similarly, Aneesh et al. prepared Eu³⁺ doped ZnO
nanoparticles with various amounts of Eu-dopant, in which the luminescence quenching of ZnO
nanoparticles was enhanced with increase in doping concentration of Eu [11].

70 On other hand, bismuth oxide (Bi_2O_3) is more advantageous and emerges as noble photocatalyst with a band gap of $\sim 1.75-2.8$ eV active under visible light region [12, 13]. It is an 71 attractive compound with variety of application in electronics, fuel cells, ceramics, gas sensors and 72 73 catalyst etc. Earlier, Bi₂O₃ has already been utilized to boost the photocatalytic activity of metal oxide semiconductor photocatalysts. For instance, Balachandran and Swaminathan prepared a 74 series of α -Bi₂O₃/ZnO nanocomposites with variable amounts of α -Bi₂O₃(6.8–18.9 wt %) and used 75 them for photodegradation of acid red dye [14]. Similarly, Yang et al. reported the fabrication of 76 ZnO nano-fibers and β -Bi₂O₃ heterostructure and utilized it for Rhodamine B dye 77 photodegradation under both UV and visible light [15]. Due to low band gap and high rate of 78 recombination of bare Bi₂O₃ photocatalyst, limits its application to use as efficient photocatalyst 79 Thus formation of heterojunction is an effective strategy for constructing visible light active 80 81 photocatalyst and also to mitigate the rate of electron-hole pair recombination. Coupling two semiconductor with suitable energy gap and band edge potential to enhance the photoefficiency is 82 83 the sole criteria for forming heterojunction Here, the valence band edge and conduction band edges 84 of Bi_2O_3 make it suitable for the coupling with Eu^{+3} -ZnO.

Recently, carbon material is acquiring lots of attention due to their versatile properties. The various carbon derived material utilized so far as a supportive material for binary heterojunction were graphene, graphene oxide, carbon nanotube, fullerene, activated carbon etc. Large specific

88 surface area, high electrical and thermal conductivity, and facile charge carrier mobility make graphene oxide more advantageous to be utilized in combination with different binary and ternary 89 heterojunction for enhanced photo-efficiency [16]. In the present work, the follow-up of our 90 previous studies is continued in the field of graphene-based composites for photodegradation of 91 organic contaminants in aqueous suspension. Eu³⁺ doped ZnO was coupled with Bi₂O₃ which in 92 turn dispersed onto graphene oxide (GO) surface and the fabricated composite were then utilized 93 for photodegradation of DMP in water samples. Eu³⁺-ZnO/Bi₂O₃/GO photocatalyst was 94 comprehensively characterized by FESEM, TEM, XRD, EDX, UV-visible techniques, along with 95 96 photoluminescence (PL) analysis. Due to the toxicity, carcinogenic nature, and resistance towards degradation of DMP, it was photodegraded by utilizing Eu³⁺-ZnO/Bi₂O₃/GO. Further, the 97 degradation kinetics followed by most plausible mechanism for the increased photocatalytic 98 efficiency of the ternary heterojunction was also proposed. Lastly, recycle efficiency of Eu³⁺-99 ZnO/Bi₂O₃/GO up to six catalytic cycle was also assessed for DMP degradation. 100

101 **2. Experimental**

102 2.1. Fabrication of Eu^{3+} -ZnO/Bi₂O₃/GO

Here, advanced Hummer method were executed to synthesize graphene oxide as per 103 previously reported work [16]. Eu^{3+} doped ZnO was prepared using the sonochemical method [17]. 104 Typically, $ZnCl_2(1 g)$ and of $C_6H_9EuO_6 xH_2O(0.1 g)$ were dissolved in 100 mL of distilled water. 105 To this reaction mixture, NaOH (1M) was added to maintain pH 10 and the mixture was subjected 106 to ultrasonication for 1 h. The obtained white precipitates were rinsed with ethanol and deionized 107 water and dried at 80 °C in hot air oven. ZnO was prepared by the same procedure without addition 108 of $C_6H_9EuO_6 \times H_2O$. In order to prepare Eu^{3+} -ZnO/Bi₂O₃/GO, GO (1 g) was dispersed in distilled 109 water (100 mL) with sonication for half an hour. To this suspension, 1.0 g Bi(NO₃)₃ and 30 mL 110

111 NH₄OH (1 M) were added with continuous stirring. In the next step, 0.5 g Eu³⁺-ZnO was added 112 to the reaction solution followed by sonication for 1 h. Eventually, precipitates were separated 113 and washed with water, dried at 80 °C to obtain Eu³⁺-ZnO/Bi₂O₃/GO composite. The same route 114 was exploited to prepare Bi₂O₃ with no addition of GO and Eu³⁺-ZnO during the course of the 115 reaction. GO was used as support for Eu³⁺-ZnO/Bi₂O₃ nanoparticles with even dispersal of Eu³⁺-116 ZnO/Bi₂O₃ and low agglomeration over its surface.

117 2.2. Apparatus

118 Transmission electron microscopy (TEM) pictures was captured on a randomly selected area at voltage of 200 kV, using FP/5022-Tecnai G2 20 S-TWIN (USA) instrument. A Nava Nano 119 SEM-45 (USA) instrument was applied for recording the scanning electron microscopy (SEM) 120 micrographs. A Perkin-Elmer Spectrometer (Spectrum RX-I) with KBr pellet was used for 121 recording the FTIR spectra ranges from 4000-400 cm⁻¹. A Panalytical's X'Pert Prodiffractrometer 122 with CuK-α-1 (45 kV/100 mA) source was used for recording X-ray diffraction (XRD) patterns. 123 To estimate the optical absorption performance, using BaSO₄ as the reference, a diffuse reflectance 124 spectrophotometer (UV 3600, Shimadzu) was employed. A Coulter SA3100 instrument was 125 exploited for determination of the BET surface area of the sample by the aid of Nitrogen 126 adsorption-desorption isotherms. A FLS-920 instrument (Edinburgh) was employed for recording 127 the photoluminescence (PL) spectra. A digital lux-meter (750 lx) was used for the measurement 128 of light intensity. For the analysis of degradation product during mineralization, a test were 129 performed on a Water HPLC instrument (Austria) utilizing a C₁₈ column (5µm, 25cm length and 130 7mm diameter) and taking a 1:39:60 ratio of acetic acid: methanol: water as eluent with a flow rate 131 132 of 0.5 mL min⁻¹. The LCMS information was obtained for analyzing degradation products using JEOL GCMATE II GC-MS with a high-resolution data system. 133

134 2.3. Photocatalytic activity of Eu^{3+} -ZnO/Bi₂O₃/GO for DMP degradation

The photocatalytic experiment were conducted in a self-developed photoreactor. Details of photoreactor are given in our previous work [18]. The estimation of chemical oxygen demand analysis was done using the reflux technique [19]. CO₂ was estimated by titration of the reaction mixture with NaOH solution [20]. The DMP removal percentage was computed using Eq. (1).

139 % removal effciency =
$$\frac{C_0 - C_t}{C_0} \times 100$$
 (1)

140 Where, C_t and C_0 are the instant and initial concentrations/COD of DMP, respectively.

141 **3. Results and discussion**

142 3.1. Morphology and structure characterization of Eu^{3+} -ZnO/Bi₂O₃/GO

The FESEM images of GO and Eu³⁺-ZnO/Bi₂O₃/GO are laid out in Fig. 1 a-d. The 143 graphene oxide exfoliation can be observed in Fig.1 a. Fig. 1b shows the thin, wrinkled, non-144 uniform and highly porous GO surface. The porous surface of GO facilitates the adsorption of 145 organic pollutants present in the aqueous phase. In Fig. 1c, dispersion of Eu³⁺-ZnO/Bi₂O₃ 146 photocatalyst onto GO surface can be clearly dipicted. As can be seen in high magnification 147 FESEM image, the agglomerates of Eu³⁺-ZnO/Bi₂O₃ are of different size and shape (Fig.1d). 148 HRTEM analysis further ascertained the deposition of Eu³⁺-ZnO and Bi₂O₃ on porous GO sheets 149 150 (Fig.2a and b). The lattice fringes at 0.33 nm, 0.28 and 0.26 nm was ascribed to (120), (001) and (002) plane of Bi₂O₃, ZnO and GO respectively [21-22]. Selected area electron diffraction (SAED) 151 analysis confirmed the polycrystalline nature of the prepared photocatalyst (Fig. 2c). Fig. 2d 152 explains the interplanar spacing between the two layers of Eu⁺³-ZnO/Bi₂O₃/GO is 0.28 nm which 153

indicate the successful incorporation of Eu^{+3} -ZnO/Bi₂O₃ over graphene oxide sheet comparable with previously reported works [22].

156 The XRD spectrum of Eu^{3+} -ZnO/Bi₂O₃/GO is exhibite in Fig. 3a. The diffraction peaks labeled with \checkmark at $2\theta = 26.6^{\circ}$, 49.9°, and 48° were assigned to {120}, {200} and {433} planes of 157 Bi₂O₃, respectively [13]. The diffraction peak of GO, denoted with \blacklozenge at $2\theta = 26.2^{\circ}$, was due to 158 {002) plane of GO [2]. The XRD peaks leveled with • at 31°, 34°, 37°, 47.6°, 56°, 63°, 65°, and 159 70° were assigned to $\{100\}, \{002\}, \{101\}, \{102\}, \{110\}, \{103\}, \{102\}$ and $\{112\}$ planes present 160 in Eu³⁺-ZnO [10]. FTIR spectrum of Eu³⁺-ZnO/Bi₂O₃/GO is shown in Fig. 3b. The band at 525 161 was due to Zn-O stretching vibration [23]. The peaks at 1405, 1650 and 1020 cm⁻¹ were due to 162 C-H (bending vibration), C=O and C-O-C stretching vibrations, respectively [24]. The peak at 862 163 cm⁻¹ was due to Bi-O stretching vibration present in Bi₂O₃[13]. The peak at 3435 was assigned to 164 O-H stretching of adsorbed water molecules [25]. The atomic percentage of Zn, Bi, Eu, C and O 165 is 6.7, 4.5, 0.54, and 55.70, 32.97 as depicted by EDX analysis (Fig. S1). The analysis of these 166 results confirmed the formation of Eu³⁺-ZnO/Bi₂O₃/GO. 167

To confirm the structural changes in GO after oxidation a Raman spectra of GO were 168 recorded between 500 and 2500 cm⁻¹ as given in supplementary Fig. S2. The intensity of D and G 169 band in the spectra clearly explain the formation of GO from graphite using Hummer's method. 170 The D band determines the extent of disorder due to sp³ hybridized carbon atom and G band 171 determines the graphitic mode due to sp² carbon atom. The Raman spectra of graphite has two 172 peak at 1366 cm⁻¹ and 1598 cm⁻¹ with I_D/I_G ratio 0.7. Whereas, the D and G band for GO is observed 173 at 1364 cm⁻¹ and 1607 cm⁻¹ with I_D/I_G ratio 1.03. Broad D band is due to the addition of defects 174 after oxidation. Further, the increase in I_D/I_G ratio from graphite to graphene oxide confirms the 175

incorporation of oxygen containing functional group. The observed peak is in good agreement theexisting literature [26].

178 The XPS analysis further support the FTIR spectra. Fig. 4 displayed XPS spectra of Eu³⁺-179 ZnO/Bi₂O₃/GO nanocomposites. Different elements present in nanocomposites were analyzed through XPS and provides information about chemical composition and oxidation states of 180 181 different elements. Through XPS analysis, presence of Europium (Eu), Zinc (Zn), Bismuth (Bi), Oxygen (O) and Carbon (C) were confirmed in Eu³⁺-ZnO/Bi₂O₃/GO nanocomposites. The high 182 resolution spectra of C1s, O1s, Zn2p, Bi4f, and Eu3d core level could be observed in Fig. 4 (a-e). 183 The binding energies at 1165 eV and 1135 eV were accredited to Eu $3d_{3/2}$ and Eu $3d_{5/2}$ orbital (Fig. 184 4a) [27]. These energy peaks confirms the presence of Eu (III) in synthesized nanocomposites. 185 Zinc exhibited two sharp peaks at 1024 eV and 1043 eV binding energies which were assignable 186 to $Zn-2p_{3/2}$ and $Zn-2p_{1/2}$ in Zn^{2+} state of ZnO and shown in Fig. 4b [28]. XPS spectrum of Bi 4f 187 (Bi $4f_{5/2}$ and Bi $4f_{7/2}$) displayed in Fig. 4c possessed peaks at 158.6 and 164.5 eV [29]. Strong peak 188 189 established at 530.5 eV was associated to O 1s orbital of oxygen atom (Fig. 4d) [30]. XPS spectrum of C1s showed sharp peaks at 283 and 288 eV were ascribed to sp² C-C bond and C-O bonds, 190 respectively (Fig. 4e) [31]. The spectra confirmed the successful formation of Eu^{3+} -ZnO/Bi₂O₃/GO 191 192 nanocomposites.

The UV-visible spectroscopy was utilized to assess the UV-visible light activity of Eu^{3+} -ZnO/Bi₂O₃/GO (Fig. 5a). ZnO had an absorption maximum at 368 nm with dominated absorption in the UV region [11, 15], which shows ultraviolet photo-response of ZnO. However, the absorption maximum showed a red shift and was observed at 410 nm in Eu³⁺ doped ZnO. Bi₂O₃ had an absorption edge at 438 nm [11, 14, 15]. In case of Eu³⁺-ZnO/Bi₂O₃/GO, the absorption edge was shifted to the visible region involving a red shift in absorption maximum. Tauc's plots
were plotted to find the band-gap energy of prepared photocatalyst using equation 2 [32].

200
$$\alpha h v = A (h v - E_a)^{n/2}$$
 (2)

201 Where, index (n) can have 1, 2, 3, and 4 value for allowed direct and indirect electronic transitions, and forbidden direct and indirect ones, respectively. Also, hv is photon energy in Tauc 202 equation and α symbol shows absorption coefficient. The band gaps of ZnO, Eu³⁺-ZnO/Bi₂O₃/GO 203 and Bi_2O_3 are 3.36, 3.01, and 1.8 eV, respectively (Fig. 5b). The charge separation mechanism in 204 photocatalytic reaction was predicted by the photoluminescence analysis. ZnO had an emission 205 peak at 375 nm (Fig. 5c). The emission peaks intensity lowered in both Eu³⁺-ZnO/Bi₂O₃ and Eu³⁺-206 ZnO/Bi₂O₃/GO. The decreased intensity of PL emission peak in Eu³⁺-ZnO/Bi₂O₃/GO displayed 207 deferred rate of recombination as compared to Eu³⁺-ZnO/Bi₂O₃ and ZnO, respectively. This 208 attribte to the electron engulfing nature of graphene oxide sheets towards charge carriers [2]. Fig. 209 5d shows nitrogen adsorption-desorption isotherms of Eu³⁺-ZnO/Bi₂O₃/GO. The composite obeys 210 211 type IV isotherm with specific area of 106.0 m²/g. This high specific surface area is highly suitable 212 for adsorption assisted photocatalytic degradation of the pollutant.

213 3.2. Photocatalytic activity of Eu^{3+} -ZnO/Bi₂O₃/GO for DMP degradation

The photocatalytic activity of the composite was explored for the removal of DMP by the aid of LED radiation. Fig. 6a exhibits photodegradation of DMP against the irradiation time period. The simple light irradiation had no influence on the removal of DMP. The removal efficiencies of 99 %, 72 %, 51 %, 50 %, and 34 % were observed for Eu^{3+} -ZnO/Bi₂O₃/GO, Eu^{3+} -ZnO/Bi₂O₃, Eu^{3+} -ZnO, ZnO and GO. Thus, the efficiencies of the exanimate materials followed the order Eu^{3+} -ZnO/Bi₂O₃/GO> Eu^{3+} -ZnO/Bi₂O₃> Eu^{3+} -ZnO> Bi₂O₃> GO. The DMP removal experiments were also conducted under the dark condition to evaluate the percentages removed by adsorption

process. Throughout the adsorption process alone, Eu³⁺-ZnO/Bi₂O₃/GO, Eu³⁺-ZnO/Bi₂O₃ Eu³⁺-221 ZnO, ZnO, and GO had the respective efficiencies of 34, 8, 6, 9, and 32 % for DMP removal 222 (Fig. 6b). The efficiency of the adsorbents followed the trend $Eu^{3+}-ZnO/Bi_2O_3/GO> GO > Eu^{3+}-$ 223 ZnO/Bi₂O₃>Eu³⁺-ZnO> Bi₂O₃. The obtained result showed that Eu³⁺-ZnO/Bi₂O₃/GO had the 224 highest photocatalysis activity as well as the adsorption capability. The GO coupling with Eu³⁺-225 ZnO/Bi₂O₃ increased the photo-catalytic degradation of DMP. This was because of notable 226 adsorption of DMP onto graphene oxide sheets [16]. The kinetics of degradation were studied by 227 228 Eq. (3) [33].

$$229 \qquad -\frac{dC}{dt} = kt \tag{3}$$

Where, k is the rate constant, and C is DMP concentration at time t. This relation can be integrated between the limits of $(0, C_0)$ and (t, C), from which one can have Eq. (4):

$$232 - \ln\left(\frac{C}{C_0}\right) = kt \tag{4}$$

The graph between $-\ln(C/C_0)$ against time was used to find the value of rate constant. Eu³⁺-ZnO/Bi₂O₃/GO, Eu³⁺-ZnO, Bi₂O₃, and GO had the rate constant of 0.087, 0.050, 0.041, and 0.019, respectively. The R² values obtained were in the range 0.95-0.99 which indicated that pseudo-first order kinetic model was obeyed during the degradation processes. Both photocatalytic and adsorption experiments indicated that photocatalysis of DMP was significantly affected by adsorption process. So, further experiments were undertaken to find out the effect of adsorption on DMP degradation.

240 3.3. Effect of adsorption on the photo-catalytic activity of Eu^{3+} -ZnO/Bi₂O₃/GO

Fig. 7 shows the effectivness of the photocatalytic degrdation of DMP, using the 241 composites, and compare their efficacy with adsoprtion ability alone, which is responsible for 242 removal process. Fig.7 displays DMP removal under three reaction parameter. The first half of the 243 graph display, adsorption of DMP without exposing towards light. The second half of the graph 244 indicate simultaneous adsorption and photocatalysis (i.e. A+P process) where, 98 %, 72 %, and 245 32% of DMP was removed using Eu³⁺-ZnO/Bi₂O₃/GO, Eu³⁺-ZnO/Bi₂O₃, and GO, respectively. 246 However, conducting photocatalytic process after adsorption (i.e. A-P process) the removal 247 percentage of DMP in 3 h is 50 %, 68 %, and 34 % for Eu³⁺-ZnO/Bi₂O₃/GO, Eu³⁺-ZnO/Bi₂O₃, and 248 GO, respectively. The order for various catalytic processes was revealed as: A+P > A-P > DA. 249 During the A-P process, excessive adsorption of DMP on the surface of photocatalyst blocks 250 penetration of light and decreases the total photoactive volume of the photocatalytic systems. The 251 decreased photoactive volume causes a defamation of catalytic activity. By using the newly 252 prepared composite, the concurrent adsorption and photocatalysis processes are the most efficient 253 strategy for degrading DMP under visible light. 254

255 3.4. Mineralization study and recycling performance of Eu^{3+} -ZnO/Bi₂O₃/GO

The complete mineralization of DMP was assessed by determining COD estimation and CO₂ formation during photodegradation (Fig. 8a and b). COD was assessed using Eu³⁺-ZnO/Bi₂O₃/GO assisted A+P process, while 65% and 64% removal were observed in the case of Eu³⁺-ZnO and ZnO, respectively. Also, 78, 55, 20, and 2 mg/L of CO₂ were estimated during mineralization of DMP using Eu³⁺-ZnO/Bi₂O₃/GO, Eu³⁺-ZnO, Bi₂O₃, and GO photocatalyst, respectively. Both COD and CO₂ estimations are in agreement with each other. This confirms the complete mineralization of DMP into CO₂ and H₂O. 263 To explore the intermediate formed during the degradation of DMP, the HPLC analysis were estimated at different time intervals of 0h, 2h, 4h, 6h, 8h, 10, respectively. After exposure to visible 264 light, the decrease in intensity of peak at retention time nearly at 12 min was noticed for DMP as 265 displayed in Fig 8c. Further, a group of new peaks (circled in Fig. 8c) appeared in between 2 to 4 266 minutes which subsequently vanished after certain time interval. The appearance of these peaks 267 268 can be ascribed to the intermediates, developed during the mineralization process. In LCMS, peaks at 122, 150, 182, 108, 94, 88 116, and 46 shown in Fig. 9d were ascribed to 2,4-DMP, 2-hydroxy-5-269 formylbenzaldehyde, 4-hydroxyisophthalic acid, benzoquinone, phenol, oxalic acid, Maleic acid, 270 271 and formic acid, respectively.

272 3.5. Band diagram and possible degradation mechanism

In order to understand the basic mechanism of enhanced photocatalysis in Eu^{3+} -ZnO/Bi₂O-3/GO, band positions of conduction band (CB) and valance band (VB) were determined exploiting Eq. (5) and (6) [34, 35]:

276
$$E_{VB} = \chi - E^e + 0.5 E_g$$
 (5)

$$277 E_{CB} = E_{VB} - E_g (6)$$

278 Where, E_g represents the band gap of photocatalyst, E^e is equal to a constant value of 4.5 279 eV i.e. energy of free electron, and χ is electronegativity of semiconductor. The E_g and χ for Eu³⁺-280 ZnO were 3.15 and 5.79 eV while for Bi₂O₃ it was found to be 1.8 and 5.59 eV, respectively [36-281 38]. The locations of VB and CB in Eu³⁺-ZnO were 2.8 and -0.35 eV, respectively [36]. The 282 position of VB and CB in Bi₂O₃ was found to be 1.30 and -0.54 eV, respectively [38]. The band 283 position of Eu³⁺-ZnO and Bi₂O₃ was suited for formation of type II heterojunction with staggered 284 band position. The scavenging examinations were conducted by utilizing isopropyl alcohol (IPA), 285 benzoquinone (BZQ), ammonium oxalate (AO), and Cr(VI) ion as hydroxyl radicals (OH), superoxide radicals (O_2^{\bullet}), holes (h^+_{VB}) and electrons (e^-_{CB}) scavengers, respectively [39]. The 286 removal efficiencies of 20, 54, 92, and 95 % were recorded in IPA, BZQ, Cr(VI), and AO, 287 respectively as shown in (Fig. S3). The presence of Cr(VI) and AO had no remarkable influence 288 on photocatalytic activity of Eu³⁺-ZnO/Bi₂O₃/GO. During the scavenging experiment, whereas, 289 OH^{\bullet} and O_{2}^{\bullet} radicals showed the highest oxidizing strength for the degradation of DMP. The 290 mechanism through which the new photocatalyst can mineralize DMP can be explained as follows 291 (Fig. 9). Under visible light, holes, and electrons were produced in valance and conduction band 292 293 of ZnO and Bi₂O₃ semiconductor, respectively. The migration of charge carrier takes place from the VB of Eu³⁺-ZnO to VB of Bi₂O₃ in accordance with the position of its band potential. The band 294 position of Eu³⁺-ZnO and Bi₂O₃ was suited for formation of type II heterojunction with staggered 295 296 band position. At the same time, photo-excited electrons migrate from CB of Bi₂O₃ to CB of Eu³⁺-ZnO [40]. Due to this transfer, the recombining rate of photo-generated electron-hole pairs was 297 diminished to a greater extent. The reaction of CB electrons of ZnO with adsorbed molecular O₂ 298 299 led to production of superoxide (O_2^{\bullet}) radicals on the surface. The hole in VB of Bi₂O₃ reacts with the H_2O molecule to produce hydroxyl radicals. The hydroxyl radicals and superoxide ultimately 300 oxidized DMP into CO₂ and H₂O. Based on the obtained results, Eu³⁺-ZnO/Bi₂O₃/GO emerged 301 as a potential photo-catalyst for degradation of DMP present in water. 302

Recycling efficiency of the photocatalyst is very crucial for its long-term application in water purification process. The photo-catalyst was separated after each cycle thorough centrifugation process and utilized for the next photocatalytic cycle. After six catalytic cycles, the photo-efficiency of Eu^{3+} -ZnO/Bi₂O₃/GO was reduced from 98 to 89% (Fig. S4a). Furthermore, XRD, EDX and FITR analysis of Eu^{3+} -ZnO/Bi₂O₃/GO was performed (Fig. S4(b-d)). XRD, EDX and FTIR spectra of Eu^{3+} -ZnO/Bi₂O₃/GO did not show any significant change in the crystalline structure of the ternary heterojunction even after six catalytic cycles. It indicates the long-term stability of prepared photocatalyst for DMP degradation.

311 **3.6.** Photocatalytic antibacterial activity of Eu⁺³-ZnO/Bi₂O₃/GO

The photocatalytic antibacterial activity of Eu⁺³-ZnO/Bi₂O₃/GO was assessed using *E. coli* 312 313 as model bacterium under visible light. As shown in Fig 10a the percentage killing dramatically increased to 90%, on exposure of photocatalyst towards the source of visible light for 60 min. 314 However, 10 % cell viability of *E. coli* were observed for 3 mg/ml of Eu⁺³-ZnO/Bi₂O₃/GO under 315 visible light Fig. 10b. The results clearly indicates the strong antibacterial activity of ternary 316 photocatalyst against gram negative strains. Generation of ROS (e⁻, h⁺ O₂⁻, OH[•]) during the 317 photocatalytic process plays a crucial role in photocatalytic antibacterial performance [41]. Thus, 318 to explore the role of generated ROS, scavenging experiments were performed to traps the ROS 319 as shown in Fig. 10c. Isopropyl alcohol, ammonium oxalate, Cr(VI), and benzoquinone were used 320 as scavengers for hydroxyl radical, holes, electron, and superoxide radical anion, respectively [42-321 43]. It can be clearly depicted from Fig. 10c that hydroxyl radical and superoxide radical were the 322 chief oxidizing species responsible for antibacterial activity on 0.5mM optimized scavenging 323 concentration [16]. Addition of isopropanol and benzoquinone traps the OH and O_2^{-} from the 324 reaction system, thus found very small decrease in cell viability. 325

326 4. Conclusion

In summary, Eu³⁺-ZnO/Bi₂O₃/GO a ternary heterojunction was successfully fabricated via precipitation method. The photocatlytic efficiency of type-II heterojunction were eveluated against DMP and antibacterial property were assessed against *E. coli* under visible light source. Doping of ZnO with Eu³⁺ lowers the band gap of ZnO as compared to un-doped ZnO, further confirmed by band gap analysis. In the ternary heterojunction Bi₂O₃ and graphene oxide sheets traps electron from ZnO conduction band, thereby decreasing rate of recombination as validate by PL results. Moreover, integration of Eu³⁺-ZnO with Bi₂O₃ extend the absorption towards visible region. With

the simultaneous adsorption and photodegradation (A+P) process, the novel ternary heterojunction 334 was capable of degrading 98 % of DMP in 100 min. Nearly, 78% of CO₂ removal were estimated 335 for DMP mineralization which further aid the mineralization process. The extent of mineralization 336 also established by HPLC and LCMS analysis. Similarly, nearly 90% of E. coli were killed when 337 the photocatalyst were exposed to visible light source for 60 min. The mineralization obeys 338 pseudo-first order model. Further, scavenging experiments reveals that OH' and O₂.⁻ were the 339 principal oxidizing species responsible for mineralization. Also, the nanocomposites were 340 recyclable up to six consecutive cycles this maintain the cost effectiveness of the photocatalyst. 341 Thus, Eu³⁺-ZnO/Bi₂O₃/GO nanocomposites can be easily applied for the detoxification of 342 pollutant present in water. 343

344 **References:**

[1] P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A.K. Saini, P.
Singh, Fabrication of fluorine doped graphene and SmVO₄ based dispersed and adsorptive
photocatalyst for abatement of phenolic compounds from water and bacterial disinfection, J.
Clean. Prod. 203 (2018) 386-399.

P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada, A.K. Saini, P. Singh, GdVO₄
 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of
 phenolic compounds in aqueous environment and bacterial disinfection, Sep. Purif. Technol.
 210 (2019) 804-816.

[3] B. Pare, S.B. Jonnalagadda, H. Tomar, P. Singh, V.W. Bhagwat, ZnO assisted
photocatalytic degradation of acridine orange in aqueous solution using visible irradiation,
Desalin. 232 (2008) 80-90.

356	[4] P. Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysiou,
357	S.C. Pillai, Antibacterial properties of F-doped ZnO visible light photocatalyst, J. Hazard.
358	Mater. 324 (2017) 39-47.

- S. Gautam, P. Shandilya, V.P. Singh, P. Raizada, P. Singh, Solar photocatalytic
 mineralization of antibiotics using magnetically separable NiFe₂O₄ supported onto graphene
 sand composite and bentonite, J. Water Process Eng. 14 (2016) 86-100.
- 362 [6] Y. Yuan, G.F. Huang, W.Y. Hu, D.N. Xiong, B.X. Zhou, S. Chang, W.Q. Huang,
 363 Construction of g-C₃N₄/CeO₂/ZnO ternary photocatalysts with enhanced photocatalytic
 364 performance, J Phys. Chem. of Solids. 106 (2017) 1-9.
- J.H. Xiao, W.Q. Huang, Y.S. Hu, F. Zeng, Q.Y. Huang, B.X. Zhou, A. Pan, K. Li, G.F.
 Huang, Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly
 efficient visible-light photocatalytic activity and photostability, J Phys. D Appl. Phys. 51(7)
 (2018) 075501.
- [8] P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B. Jonnalagadda, P. Thakur, Solar
 photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles:
 role of adsorption in dye degradation, Appl. Catal. A, 486 (2014) 159-169.
- 372 [9] O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy373 doped ZnO nanostructures and their photocatalytic properties, J. Alloys Comp. 576 (2013)
 374 72-79.
- [10] A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo,
 Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis,
 characterization and response surface modeling of photocatalytic process, Appl. Catal. A:
- 378 Gen. 488 (2014) 160–170.

- [11] P. M. Aneesh, M. K. Jayaraj, Red luminescence from hydrothermally synthesized Eu-doped
 ZnO nanoparticles under visible excitation, Bull. Mater. Sci.33 (2010) 227–231.
- [12] A. Hernandez-Gordillo, J.C. Medina, M. Bizarro, R. Zanella, B.M. Monroy, S.E. Rodil,
 Photocatalytic activity of enlarged microrods of alpha-Bi2O3 produced using
 ethylenediamine-solvent, Ceram Int. 42(10) (2016) 11866–75.
- [13] B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional photocatalytic
 mineralization of oxytetracycline and ampicillin antibiotics using Bi₂O₃/BiOCl supported on
 graphene sand composite and chitosan, J. Colloid Interface Sci. 479 (2016) 271-283.
- [14] S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi₂O₃–ZnO
 photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C, 116 (50) (2012)
 26306-12.
- 390 [15] Y. Yang, L. Xu, C. Su, J. Che, W. Sun, H. Gao, ElectrospunZnO/Bi₂O₃ nanofibers with
 anhanced photocatalytic activity, J Nanomater. 2014 (2014) 7.
- [16] P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.H. Lim, D.Y. Jeong, D.P. Dewedi, A.K. Saini,
- P. Singh, Islanding of EuVO₄ on high-dispersed fluorine doped few layered graphene sheets
 for efficient photocatalytic mineralization of phenolic compounds and bacterial disinfection,
- 395 J. Taiwan Inst. Chem. Eng. (2018) 1-15.
- [17] A. Khataee, A. Karimi , M. Zarei, S.W. Joo, Eu-doped ZnO nanoparticles: Sonochemical
 synthesis, characterization, and sonocatalytic application Ultrason. Sonochem. 2015.
- 398 [18] P. Raizada, J. Kumari, R. Dhiman, V. P. Singh, P. Singh, Magnetically retrievable
- Bi_2WO_6/Fe_3O_4 immobilized on graphene sand composite for investigation of photocatalytic
- 400 mineralization of oxytetracycline and ampicillin, Proc. Safety Environ. Prot. 106 (2016) 104-
- 401 116.

- [19] APHA, Standard methods for examination of water and wastewater, American Public Health
 Association, American Water Works Association, Water Environment Federation New
 York, 6th Edn (1985) 535.
- [20] M. Kolb, M. Bahadir, B. Teichgräber, Determination of chemical oxygen demand (COD)
 using an alternative wet chemical method free of mercury and dichromate, Water Res. 122
 (2017) 645-654.
- 408 [21] S. Yi, X. Yue, D. Xu, Z. Liu, F. Zhao, D. Wang, Y. Lin, Study on photogenerated charge
 409 transfer properties and enhanced visible-light photocatalytic activity of p-type Bi₂O₃/n-type
 410 ZnO heterojunctions, New J. Chem. 39 (2015) 2917-2924.
- [22] B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, Photocatalytic
 mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using
 graphene sand composite and chitosan supported BiOCl, J. Mol. Catal. A: Chem. 423 (2016)
 400-413.
- [23] R. Zhou, Q. Zhao, K.K. Liu, Y.J. Lu, L. Dong, C.X. Shan, Europium-decorated ZnO
 quantum dots as a fluorescent sensor for the detection of ananthrax biomarker, J. Mater.
 Chem. C, 5 (2017) 1685.
- [24] T.V.L Thejaswini, D. Prabhakaran, M.A. Maheswari, Ultrasound assisted synthesis of nanorod embedded petal designed a-Bi₂O₃-ZnO nanoparticles and their ultra-responsive visible
 light induced photocatalytic properties, J. Photochem. Photobiol. A: Chem. 335 (2017) 217229.
- [25] P. Singh, S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, Graphene bentonite
 supported ZnFe₂O₄ as super-paramagnetic photocatalyst for antibiotic degradation. Adv.
 Mater. Lett. 8(3) (2017) 229-238.

- [26] S. Perumbilavil, P. Sankar, T.R. Priya, R. Philip, White light Z-scan measurements of
 ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm
 region. Appl. Phys. Lett. 107(5) (2015) 051104.
- 428 [27] S. Kumar, R. Prakash, and Vivek K. Singh, Synthesis, characterization, and applications of
 429 europium oxide: a review, Rev. Adv. Sci. Eng. 4 (2015) 247-257.
- [28] S. Kumar, A. Dhiman, P. Sudhagar, V. Krishnan, ZnO-graphene quantum dots
 heterojunctions for natural sunlight-driven photocatalytic environmental remediation, Appl.
 Surf. Sci. 447 (2018) 802-815.
- [29] Y. Feng, L. Li, J. Li, J. Wang, L. Liu, Synthesis of mesoporous BiOBr 3D microspheres and
 their photodecomposition for toluene, J. Hazard. Mater. 192, (2011) 538-544.
- 435 [30] H. Y. Ji, X. C. Jing, Y. G. Xu, J. Yan, H. P. Li, Y. P. Li, Y. Huang, Q Zhang, H. Xu and H.
- M. Li, Magnetic g-C₃N₄/NiFe₂O₄ hybrids with enhanced photocatalytic activity, RSC Adv.
 5 (2015) 57960-57967.
- [31] X.J. Wang, W.Y. Yan, F.T. Li, Y.B. Xue, R.H. Liu and Y.J. Hao, In situ microwave-assisted
 synthesis of porous N-TiO₂/g-C₃N₄ heterojunctions with enhanced visible-light
 photocatalytic properties, Ind. Eng. Chem. Res., 52 (2013) 17140–17150.
- [32] P. Raizada, J. Kumari, P. Shandilya, P. Singh, Kinetics of photocatalytic mineralization of
 oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO₄
 nanocomposite in simulated waste water, Desalin. Water Treat. 79 (79) (2017) 204-213.
- 444 [33] P. Raizada, B. Priya, P. Thakur, P. Singh, Solar light induced photodegradation of
- 445 oxytetracyline using Zr doped TiO₂/CaO based nanocomposite, Ind. J. Chem. Sec. A, 55(7)
 446 (2016) 803-809.

447	[34] J. He, Y. Cheng, T. Wang, D. Feng, L. Zheng, D. Shao, W. Wang, W. Wang, F. Lu, H.
448	Dong , R. Zheng , H. Liu, Enhanced photocatalytic performances and magnetic recovery
449	capacity of visible-light-driven Z-scheme ZnFe ₂ O ₄ /AgBr/Ag photocatalyst, Appl. Surf. Sci.
450	440 (2018) 99-106.

- [35] G. Gupta, A. Kaur, A.S.K. Sinha, S.K. Kansal, Photocatalytic degradation of levofloxacin
 in aqueous phase using Ag/AgBr/BiOBr microplates under visible light, Mater. Res. Bull.
 88 (2017) 148–155.
- [36] C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar
 photocatalysts: Synthesis, mechanisms and applications, Renewable and Sustainable Energy
 Reviews 81 (2018) 536-551.
- [37] M. Han, T. Sun, P.Y. Tan, X. Chen, O.K.Tan, M.S. Tse, m-BiVO₄@γ-Bi₂O₃ core–shell p–n
 heterogeneous nanostructure for enhanced visible-light photocatalytic performance, RSC Adv.3
 (2013) 24964-24970.
- [38] J.C. Medina, N.S. Portillo-Velez, M. Bizarro, A. Hernández-Gordillo, S.E. Rodil, Synergistic
 effect of supported ZnO/Bi₂O₃ heterojunctions for photocatalysis under visible light, Dyes
 and Pigments 153 (2018) 106–116.
- [39] A. Mehdinia, M. Ahmadifar, M.O. Aziz-Zanjani, A. Jabbari, M.S. Hashtroudi, Selective
 adsorption of 2, 4-dinitrophenol on molecularly imprinted nanocomposites of mesoporous
 silica SBA-15/polyaniline. Analyst, 137(18) (2012) 4368-4374.
- 466 [40] L.S. Andrade, E.A. Laurindo, R.V.D. Oliveira, R.C. Rocha-Filho, Q.B. Cass, Development
- 467 of a HPLC method to follow the degradation of phenol by electrochemical or photo468 electrochemical treatment. J. Braz. Chem. Soc., 17(2) (2006) 369-373.

469	[41] P. Raizada, A. Sudhaik, P. Shandilya, A. Saini, V. Gupta, P. Singh, Fabrication of Ag ₃ VO ₄
470	decorated phosphorus and sulphur co-doped graphitic carbon nitride as high-dispersed
471	photocatalyst for phenol mineralization and E. Coli disinfection, Sep. Purify. Technol. 212
472	(2018) 887-900.
473	[42] P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung. Visible light assisted
474	photodegradation of 2, 4-dinitrophenol using Ag ₂ CO ₃ loaded phosphorus and sulphur co-
475	doped graphitic carbon nitride nanosheets in simulated wastewater. Arab. J. Chem. (2018).
476	[43] P. Singh, P. Raizada, A. Suadhik, P. Shandilya, P. Thakur, S. Agarwal, V.K. Gupta,
477	Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for
478	phenol degradation under visible light, J Saudi Chem. Soc. 23 (2018) 586-599.
479	
480	
481	

Fig. 1. FESEM images of (a) GO (b) magnified image of slected portion of (a), (c) Eu^{3+} -ZnO/Bi₂O₃/GO and (d) magnified image of slected portion of (c).

Fig. 2.(a) TEM images of Eu^{3+} -ZnO/Bi₂O₃/GO (b) magnified image of slected portion of (a), (c) SAED pattern of Eu^{3+} -ZnO/Bi₂O₃/GO and (d) planar spacing of the composite.

Fig. 3. XRD and FTIR spectra of Eu³⁺-ZnO/Bi₂O₃/GO nanocomposite.

Fig. 4. XPS spectra of Eu³⁺-ZnO/Bi₂O₃/GO nanocomposite.

Fig. 5. (a) UV-visible analysis, (b) Band gap calculation, (c) photoluminescence anlysis and (d) BET adsorption-desorption isotherms of $Eu^{3+}-ZnO/Bi_2O_3/GO$.

Fig. 6. (a) Photocatalytic degrdation of DMP and (b) adsoprtional removal of DMP using Eu^{3+} -ZnO/Bi₂O₃/GO [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1× 10⁻³ mol dm⁻³; [photocatalyst] = 50 mg/100 mL; and intensity of light = 750 lx].

Fig. 7. Effect of adosprtion on photodegrdation of DMP using Eu^{3+} -ZnO/Bi₂O₃/GO. [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1× 10⁻³ mol dm⁻³; [photocatalyst] = 50 mg/100 mL; and intensity of light = 750 lx].

Fig. 8. (a) COD removal (b) CO₂ estimation, (c) HPLC and (d) LCMS analysis of Eu³⁺ ZnO/Bi₂O-₃/GO [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1×10^{-3} mol dm⁻³; [photocatalyst] = 50 mg/100 mL; and intensity of light = 750 lx].

Fig. 9. Mechanistic view for enmanced photocatalytic degradation of DMP

Fig. 10. (a) Antibacterial study of Eu^{+3} -ZnO/Bi₂O₃/GO against *E. coli* by CFU method in the presence of visible light, (b) percentage cell viability under different time of light exposure of

 Eu^{+3} -ZnO/Bi₂O₃/GO, (c) Effect of radical scavengers on photocatalytic antibacterial activity of Eu^{+3} -ZnO/Bi₂O₃/GO. [Reaction time = 1 h; light intensity = 750 lx; (c) Scavenger concentration: 0.5mM of isopropanol, benzoquinone, ammonium oxalate, Cr(VI) for 0.5 mg/ml of Eu^{+3} -ZnO/Bi₂O₃/GO under solar light irradiation].

Fig. S1. EDX spectrum of Eu³⁺-ZnO/Bi₂O₃/GO nanocomposite.

Fig. S2. Raman analysis of Graphite and graphene oxide.

Fig. S3. Effect of radical scavengers on DMP degradation by using Eu³⁺-ZnO/Bi₂O₃/GO.

Fig. S4. (a) Recycle efficieny of Eu³⁺-ZnO/Bi₂O₃/GO (b) FTIR spectra of Eu³⁺-ZnO/Bi₂O-₃/GO after photocatalysis (c) EDX analysis of Eu³⁺-ZnO/Bi₂O₃/GO after photocatalysis and (d) XRD pattern of Eu³⁺-ZnO/Bi₂O₃/GO before and after photocatalysis [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1×10^{-3} mol dm⁻³; [photocatalyst] = 50 mg/100 mL; and intensity of light = 750 lx].