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21 Abstract 

22 We reported the immobilization of binary heterojunction Eu3+-ZnO/Bi2O3 over the surface of 

23 graphene oxide (GO) sheets by precipitation method to compose a visible light drive photocatalyst. 

24 The ternary nanocomposites were characterized by different spectral technique like FESEM, FTIR, 

25 XRD, XPS, EDX, HRTEM, UV-visible, PL, HPLC and LCMS analysis. The high specific surface 

26 area of 106.0 m2g-1 of Eu3+-ZnO/Bi2O3/GO nanocomposites was ascertained by BET adsorption-

27 desorption isotherm. The nano-composite exhibit excellent photo-efficiency for the 

28 photodegradation of 2, 4-dimethyl phenol (DMP)  under visible region and was almost completely 

29 mineralized in 100 min as compared to the bare and binary system. The mineralized products of 

30 DMP were analyzed by HPLC and LCMS analysis. The kinetic model suggests the degradation 

31 pathway obeys pseudo-first order kinetic. Their antibacterial property were assessed against E. coli 

32 bacteria and nearly 90% of gram negative bacteria were killed by using ternary photocatalyst as 

33 determined by CFU method. Also, Eu3+-ZnO/Bi2O3/GO nanocomposites possessed significant 

34 recycle efficiency up to six consecutive cycles which is beneficial to minimize the tariff. The 

35 improved photo-efficiency is due to the extension towards visible region, increase surface area, 

36 and high charge separation in ternary heterojunction. 

37 Keywords: Eu3+doped ZnO; Bi2O3; Heterojunction formation; Enhanced photo-catalysis; 2,4-

38 dimethylphenol degradation; Antibacterial activity    
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42 Introduction 

43 Phenols and their derivative is a primary pollutant released by the various industries like 

44 paint, textiles, paper, plastics, petroleum refining and pharmaceutical industries etc. [1]. The 

45 existence of phenolic compounds in waste water need to be eliminated as it brings a lots of harmful 

46 effects on human health and aquatic life. To address this, advanced oxidation processes (AOPs) 

47 have found a valuable potential for the degradation of various pollutant in aqueous suspension [2]. 

48 Amongst, AOP’s process employed for the organic pollutants degradation, visible light assisted 

49 photocatalysis is of the most appropriate ones, owning to its several advantages like 

50 inexpensiveness and effectiveness.  Among the various semiconductors used for photocatalytic 

51 processes, zinc oxide (ZnO) has emerged as a suitable catalyst for photocatalytic degradation and 

52 mineralization of various organic and inorganic contaminants [3]. The excellence of ZnO is due to 

53 its strong oxidizing power and low cost which makes it a favorable candidate to carry out 

54 photocatalytic oxidation processes occurring in water media [4].  On exposure to solar light with 

55 energy higher or equal to the band gap of ZnO semiconductor, generation of electron-hole pair 

56 takes place. The generated electrons reacts with O2 to form superoxide radicals (O2
•¯) and 

57 meanwhile, the holes reacts with H2O or OH− ions to produce hydroxyl radicals (•OH) [5, 6].  

58 Owing to strong oxidizing ability, •OH and O2
•¯ degraded the pollutant and convert them into H2O 

59 and CO2 [7]. However, ZnO is only active under UV light, and it also suffers from re-combination 

60 of charge carrier produced during photocatalysis [8]. To overcome these drawbacks of ZnO and 

61 similar semiconductors, till now, two main strategy have been employed: (i) doping with cationic, 

62 anionic or rare earth elements and (ii) the construction of heterojunction with other semiconductors 

63 [9–11]. These strategy aims to enhance the stability, photocatalytic efficacy and expand the 

64 absorption of light in visible range. Nowadays, doping with a rare earth element, like Ln3+ ion, has 
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65 been revealed that can cause improvement in the ZnO photocatalytic activity [10]. Khataee et al. 

66 prepared Eu3+ doped ZnO nanoparticles by using the sonochemical method and was exploited for 

67 the photo-degradation of acid orange dye [10]. Similarly, Aneesh et al. prepared Eu3+ doped ZnO 

68 nanoparticles with various amounts of Eu-dopant, in which the luminescence quenching of ZnO 

69 nanoparticles was enhanced with increase in doping concentration of Eu [11].

70    On other hand, bismuth oxide (Bi2O3) is more advantageous and emerges as noble 

71 photocatalyst with a band gap of ~1.75–2.8 eV active under visible light region [12, 13]. It is an 

72 attractive compound with variety of application in electronics, fuel cells, ceramics, gas sensors and 

73 catalyst etc. Earlier, Bi2O3 has already been utilized to boost the photocatalytic activity of metal 

74 oxide semiconductor photocatalysts. For instance,   Balachandran and Swaminathan prepared a 

75 series of α-Bi2O3/ZnO nanocomposites with variable amounts of α-Bi2O3 (6.8–18.9 wt %) and used 

76 them for photodegradation of acid red dye [14]. Similarly, Yang et al. reported the fabrication of 

77 ZnO nano-fibers and β-Bi2O3 heterostructure and utilized it for Rhodamine B dye 

78 photodegradation under both UV and visible light [15]. Due to low band gap and high rate of 

79 recombination of bare Bi2O3 photocatalyst, limits its application to use as efficient photocatalyst. 

80 Thus formation of heterojunction is an effective strategy for constructing visible light active 

81 photocatalyst and also to mitigate the rate of electron-hole pair recombination. Coupling two 

82 semiconductor with suitable energy gap and band edge potential to enhance the photoefficiency is 

83 the sole criteria for forming heterojunction Here, the valence band edge and conduction band edges 

84 of Bi2O3 make it suitable for the coupling with Eu+3-ZnO.

85 Recently, carbon material is acquiring lots of attention due to their versatile properties. The 

86 various carbon derived material utilized so far as a supportive material for binary heterojunction 

87 were graphene, graphene oxide, carbon nanotube, fullerene, activated carbon etc. Large specific 
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88 surface area, high electrical and thermal conductivity, and facile charge carrier mobility make 

89 graphene oxide more advantageous to be utilized in combination with different binary and ternary 

90 heterojunction for enhanced photo-efficiency [16]. In the present work, the follow-up of our 

91 previous studies is continued in the field of graphene-based composites for photodegradation of 

92 organic contaminants in aqueous suspension. Eu3+ doped ZnO was coupled with Bi2O3 which in 

93 turn dispersed onto graphene oxide (GO) surface and the fabricated composite were then utilized 

94 for photodegradation of DMP in water samples. Eu3+-ZnO/Bi2O3/GO photocatalyst was 

95 comprehensively characterized by FESEM, TEM, XRD, EDX, UV-visible techniques, along with 

96 photoluminescence (PL) analysis. Due to the toxicity, carcinogenic nature, and resistance towards 

97 degradation of DMP, it was photodegraded by utilizing Eu3+-ZnO/Bi2O3/GO. Further, the 

98 degradation kinetics followed by most plausible mechanism for the increased photocatalytic 

99 efficiency of the ternary heterojunction was also proposed. Lastly, recycle efficiency of Eu3+-

100 ZnO/Bi2O3/GO up to six catalytic cycle was also assessed for DMP degradation.  

101 2. Experimental 

102 2.1. Fabrication of Eu3+-ZnO/Bi2O3/GO 

103 Here, advanced Hummer method were executed to synthesize graphene oxide as per 

104 previously reported work [16]. Eu3+ doped ZnO was prepared using the sonochemical method [17]. 

105 Typically, ZnCl2 (1 g) and of C6H9EuO6·xH2O (0.1 g) were dissolved in 100 mL of distilled water. 

106 To this reaction mixture, NaOH (1M) was added to maintain pH 10 and the mixture was subjected 

107 to ultrasonication for 1 h. The obtained white precipitates were rinsed with ethanol and deionized 

108 water and dried at 80 ̊ C in hot air oven.  ZnO was prepared by the same procedure without addition 

109 of C6H9EuO6·xH2O. In order to prepare Eu3+-ZnO/Bi2O3/GO, GO (1 g) was dispersed in distilled 

110 water (100 mL) with sonication for half an hour. To this suspension, 1.0 g Bi(NO3)3 and 30 mL 



6

111 NH4OH  (1 M) were added with continuous stirring. In the next step, 0.5 g Eu3+-ZnO was added 

112 to the reaction solution followed by sonication for 1 h.  Eventually, precipitates were separated 

113 and washed with water, dried at 80 ˚C to obtain Eu3+-ZnO/Bi2O3/GO composite.  The same route 

114 was exploited to prepare Bi2O3 with no addition of GO and Eu3+-ZnO during the course of the 

115 reaction.  GO was used  as support for  Eu3+-ZnO/Bi2O3 nanoparticles with  even dispersal of Eu3+-

116 ZnO/Bi2O3 and low agglomeration  over its surface.

117 2.2. Apparatus

118 Transmission electron microscopy (TEM) pictures was captured on a randomly selected 

119 area at voltage of 200 kV, using FP/5022-Tecnai G2 20 S-TWIN (USA) instrument. A Nava Nano 

120 SEM-45 (USA) instrument was applied for recording the scanning electron microscopy (SEM) 

121 micrographs. A Perkin-Elmer Spectrometer (Spectrum RX-l) with KBr pellet was used for 

122 recording the FTIR spectra ranges from 4000-400 cm-1. A Panalytical's X'Pert Prodiffractrometer 

123 with CuK-α-1 (45 kV/100 mA) source was used for recording X-ray diffraction (XRD) patterns.  

124 To estimate the optical absorption performance, using BaSO4 as the reference, a diffuse reflectance 

125 spectrophotometer (UV 3600, Shimadzu) was employed. A Coulter SA3100 instrument was 

126 exploited for determination of the BET surface area of the sample by the aid of Nitrogen 

127 adsorption-desorption isotherms. A FLS-920 instrument (Edinburgh) was employed for recording 

128 the photoluminescence (PL) spectra. A digital lux-meter (750 lx) was used for the measurement 

129 of light intensity. For the analysis of  degradation product during mineralization, a test were 

130 performed on a Water HPLC instrument (Austria) utilizing a C18 column (5µm, 25cm length and 

131 7mm diameter) and taking a 1:39:60 ratio of acetic acid: methanol: water as eluent with a flow rate 

132 of 0.5 mL min-1. The LCMS information was obtained for analyzing degradation products using 

133 JEOL GCMATE II GC-MS with a high-resolution data system.
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134 2.3. Photocatalytic activity of Eu3+-ZnO/Bi2O3/GO for DMP degradation

135 The photocatalytic experiment were conducted in a self-developed photoreactor. Details of 

136 photoreactor are given in our previous work [18].  The estimation of chemical oxygen demand 

137 analysis was done using the reflux technique [19].  CO2 was estimated by titration of the reaction 

138 mixture with NaOH solution [20].  The DMP removal percentage was computed using Eq. (1).

139 %  removal effciency =   
C0 - Ct

C0
 ×  100                                                                                    (1)

140 Where, Ct and C0 are the instant and initial concentrations/COD of DMP, respectively. 

141 3. Results and discussion 

142 3.1. Morphology and structure characterization of Eu3+-ZnO/Bi2O3/GO

143 The FESEM images of GO and Eu3+-ZnO/Bi2O3/GO are laid out  in Fig. 1 a-d.  The 

144 graphene oxide exfoliation can be observed in Fig.1 a. Fig. 1b shows the thin, wrinkled, non-

145 uniform and highly porous GO surface. The porous surface of GO facilitates the adsorption of 

146 organic pollutants present in the aqueous phase. In Fig. 1c, dispersion of Eu3+-ZnO/Bi2O3 

147 photocatalyst onto GO surface can be clearly dipicted. As can be seen in high magnification 

148 FESEM image, the agglomerates of Eu3+-ZnO/Bi2O3 are of different size and shape (Fig.1d). 

149 HRTEM analysis further ascertained the deposition of Eu3+-ZnO and Bi2O3 on porous GO sheets 

150 (Fig.2a and b). The lattice fringes at 0.33 nm, 0.28 and 0.26 nm was ascribed to (120), (001) and 

151 (002) plane of Bi2O3, ZnO and GO respectively [21-22]. Selected area electron diffraction (SAED) 

152 analysis confirmed the polycrystalline nature of the prepared photocatalyst (Fig. 2c). Fig. 2d 

153 explains the interplanar spacing between the two layers of Eu+3-ZnO/Bi2O3/GO is 0.28 nm which 
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154 indicate the successful incorporation of Eu+3-ZnO/Bi2O3 over graphene oxide sheet comparable 

155 with previously reported works [22]. 

156 The XRD spectrum of Eu3+-ZnO/Bi2O3/GO is exhibite in Fig. 3a.  The diffraction peaks 

157 labeled with ♥ at 2θ = 26.6°, 49.9°, and 48° were assigned to {120}, {200} and {433} planes of 

158 Bi2O3, respectively [13].  The diffraction peak of GO, denoted with ♦ at 2θ = 26.2°, was due to 

159 {002) plane of GO [2]. The XRD peaks leveled with ● at 31°, 34°, 37°, 47.6°, 56°, 63°, 65 °, and 

160 70° were assigned to {100}, {002}, {101}, {102}, {110},{103}, {102)  and {112} planes present 

161 in Eu3+-ZnO [10]. FTIR spectrum of Eu3+-ZnO/Bi2O3/GO is shown in Fig. 3b. The band at 525 

162 was due to Zn-O stretching vibration [23]. The peaks at 1405, 1650 and 1020 cm-1 were due to 

163 C-H (bending vibration), C=O and C-O-C stretching vibrations, respectively [24]. The peak at 862 

164 cm-1 was due to Bi-O stretching vibration present in Bi2O3 [13]. The peak at 3435 was assigned to 

165 O-H stretching of adsorbed water molecules [25]. The atomic percentage of Zn, Bi, Eu, C and O 

166 is 6.7, 4.5, 0.54, and 55.70, 32.97 as depicted by EDX analysis (Fig. S1). The analysis of these 

167 results confirmed the formation of Eu3+-ZnO/Bi2O3/GO. 

168 To confirm the structural changes in GO after oxidation a Raman spectra of GO were 

169 recorded between 500 and 2500 cm-1 as given in supplementary Fig. S2. The intensity of D and G 

170 band in the spectra clearly explain the formation of GO from graphite using Hummer’s method. 

171 The D band determines the extent of disorder due to sp3 hybridized carbon atom and G band 

172 determines the graphitic mode due to sp2 carbon atom. The Raman spectra of graphite has two 

173 peak at 1366 cm-1 and 1598 cm-1 with ID/IG ratio 0.7. Whereas, the D and G band for GO is observed 

174 at 1364 cm-1 and 1607 cm-1 with ID/IG ratio 1.03. Broad D band is due to the addition of defects 

175 after oxidation. Further, the increase in ID/IG ratio from graphite to graphene oxide confirms the 
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176 incorporation of oxygen containing functional group. The observed peak is in good agreement the 

177 existing literature [26]. 

178 The XPS analysis further support the FTIR spectra. Fig. 4 displayed XPS spectra of Eu3+-

179 ZnO/Bi2O3/GO nanocomposites. Different elements present in nanocomposites were analyzed 

180 through XPS and provides information about chemical composition and oxidation states of 

181 different elements. Through XPS analysis, presence of Europium (Eu), Zinc (Zn), Bismuth (Bi), 

182 Oxygen (O) and Carbon (C) were confirmed in Eu3+-ZnO/Bi2O3/GO nanocomposites. The high 

183 resolution spectra of C1s, O1s, Zn2p, Bi4f, and Eu3d core level could be observed in Fig. 4 (a-e). 

184 The binding energies at 1165 eV and 1135 eV were accredited to Eu 3d3/2 and Eu 3d5/2 orbital (Fig. 

185 4a) [27].  These energy peaks confirms the presence of Eu (III) in synthesized nanocomposites. 

186 Zinc exhibited two sharp peaks at 1024 eV and 1043 eV binding energies which were assignable 

187 to Zn-2p3/2 and Zn-2p1/2 in Zn2+ state of ZnO and shown in Fig. 4b [28]. XPS spectrum of Bi 4f 

188 (Bi 4f5/2 and Bi 4f7/2) displayed in Fig. 4c possessed peaks at 158.6 and 164.5 eV [29]. Strong peak 

189 established at 530.5 eV was associated to O 1s orbital of oxygen atom (Fig. 4d) [30]. XPS spectrum 

190 of C1s showed sharp peaks at 283 and 288 eV were ascribed to sp2 C-C bond and C-O bonds, 

191 respectively (Fig. 4e) [31]. The spectra confirmed the successful formation of Eu3+-ZnO/Bi2O3/GO 

192 nanocomposites.

193 The UV-visible spectroscopy was utilized to assess the UV-visible light activity of Eu3+-

194 ZnO/Bi2O3/GO (Fig. 5a). ZnO had an absorption maximum at 368 nm with dominated absorption 

195 in the UV region [11, 15], which shows ultraviolet photo-response of ZnO. However, the 

196 absorption maximum showed a red shift and was observed at 410 nm in Eu3+ doped ZnO.  Bi2O3 

197 had an absorption edge at 438 nm [11, 14, 15].  In case of Eu3+-ZnO/Bi2O3/GO, the absorption 
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198 edge was shifted to the visible region involving a red shift in absorption maximum. Tauc’s plots 

199 were plotted to find the band-gap energy of prepared photocatalyst using equation 2 [32]. 

200 𝛼h𝑣 = 𝐴(h𝑣 - 𝐸𝑔)𝑛/2
                                                                                                                                (2)

201 Where, index (n) can have 1, 2, 3, and 4 value for allowed direct and indirect electronic 

202 transitions, and forbidden direct and indirect ones, respectively. Also, hν is photon energy in Tauc 

203 equation and α symbol shows absorption coefficient. The band gaps of ZnO, Eu3+-ZnO/Bi2O3/GO 

204 and Bi2O3 are 3.36, 3.01, and 1.8 eV, respectively (Fig. 5b).  The charge separation mechanism in 

205 photocatalytic reaction was predicted by the photoluminescence analysis. ZnO had an emission 

206 peak at 375 nm (Fig. 5c). The emission peaks intensity lowered in both Eu3+-ZnO/Bi2O3 and Eu3+-

207 ZnO/Bi2O3/GO.  The decreased intensity of PL emission peak in Eu3+-ZnO/Bi2O3/GO displayed 

208 deferred rate of recombination as compared to Eu3+-ZnO/Bi2O3 and ZnO, respectively. This 

209 attribte to the electron engulfing nature of graphene oxide sheets towards charge carriers [2]. Fig. 

210 5d shows nitrogen adsorption-desorption isotherms of Eu3+-ZnO/Bi2O3/GO. The composite obeys 

211 type IV isotherm with specific area of 106.0 m2/g. This high specific surface area is highly suitable 

212 for adsorption assisted photocatalytic degradation of the pollutant. 

213 3.2. Photocatalytic activity of Eu3+-ZnO/Bi2O3/GO for DMP degradation

214 The photocatalytic activity of the composite was explored for the removal of DMP by the 

215 aid of LED radiation. Fig. 6a exhibits photodegradation of DMP against the irradiation time period.  

216 The simple light irradiation had no influence on the removal of DMP. The removal efficiencies of   

217 99 %, 72 %, 51 %, 50 %, and 34 % were observed for Eu3+-ZnO/Bi2O3/GO, Eu3+-ZnO/Bi2O3, Eu3+-

218 ZnO, ZnO and GO. Thus, the efficiencies of the exanimate materials followed the order Eu3+-

219 ZnO/Bi2O3/GO> Eu3+-ZnO/Bi2O3> Eu3+-ZnO> Bi2O3> GO. The DMP removal experiments were 

220 also conducted under the dark condition to evaluate the percentages removed by adsorption 
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221 process. Throughout the adsorption process alone, Eu3+-ZnO/Bi2O3/GO, Eu3+-ZnO/Bi2O3, Eu3+-

222 ZnO, ZnO, and GO had the respective efficiencies of   34, 8, 6, 9, and 32 %  for DMP removal 

223 (Fig. 6b). The efficiency of the adsorbents followed the trend Eu3+-ZnO/Bi2O3/GO> GO >Eu3+-

224 ZnO/Bi2O3>Eu3+-ZnO> Bi2O3. The obtained result showed that Eu3+-ZnO/Bi2O3/GO had the 

225 highest photocatalysis activity as well as the adsorption capability. The GO coupling with Eu3+-

226 ZnO/Bi2O3 increased the photo-catalytic degradation of DMP. This was because of notable 

227 adsorption of DMP onto graphene oxide sheets [16].  The kinetics of degradation were studied by 

228 Eq. (3) [33].

229 -
𝑑𝐶𝑑𝑡 = 𝑘𝑡                                                                                                                                                      (3)

230  Where, k is the rate constant, and C is DMP concentration at time t. This relation can be 

231 integrated between the limits of (0, C0) and (t, C), from which one can have Eq. (4): 

232 - ln ( 𝐶𝐶0
)    = 𝑘𝑡                                                                                                                                         (4 )

233 The graph between –ln(C/C0) against time was used to find the value of rate constant.  Eu3+-

234 ZnO/Bi2O3/GO, Eu3+-ZnO, Bi2O3, and GO had the rate constant of 0.087, 0.050, 0.041, and 0.019, 

235 respectively.  The R2 values obtained were in the range 0.95-0.99 which indicated that pseudo-first 

236 order kinetic model was obeyed during the degradation processes. Both photocatalytic and 

237 adsorption experiments indicated that photocatalysis of DMP was significantly affected by 

238 adsorption process. So, further experiments were undertaken to find out the effect of adsorption 

239 on DMP degradation.     

240 3.3. Effect of adsorption on the photo-catalytic activity of Eu3+-ZnO/Bi2O3/GO
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241 Fig. 7 shows the effectivness of the photocatalytic degrdation of  DMP, using the 

242 composites, and compare their efficacy with adsoprtion ability alone, which is responsible for 

243 removal process. Fig.7 displays DMP removal under three reaction parameter. The first half of the 

244 graph display, adsorption of DMP without exposing towards light. The second half of the graph 

245 indicate simultaneous adsorption and photocatalysis (i.e. A+P process) where, 98 %, 72 %, and 

246 32% of DMP was removed using Eu3+-ZnO/Bi2O3/GO, Eu3+-ZnO/Bi2O3, and GO, respectively. 

247 However, conducting photocatalytic process after adsorption (i.e. A-P process) the removal 

248 percentage of DMP in 3 h is 50 %, 68 %, and 34 % for Eu3+-ZnO/Bi2O3/GO, Eu3+-ZnO/Bi2O3, and 

249 GO, respectively. The order for various catalytic processes was revealed as: A+P > A-P > DA.  

250 During the A-P process, excessive adsorption of DMP on the surface of photocatalyst blocks 

251 penetration of light and decreases the total photoactive volume of the photocatalytic systems. The 

252 decreased photoactive volume causes a defamation of catalytic activity. By using the newly 

253 prepared composite, the concurrent adsorption and photocatalysis processes are the most efficient 

254 strategy for degrading DMP under visible light.   

255 3.4. Mineralization study and recycling performance of Eu3+-ZnO/Bi2O3/GO 

256 The complete mineralization of DMP was assessed by determining COD estimation and CO2 

257 formation during photodegradation (Fig. 8a and b).  COD was assessed using Eu3+-ZnO/Bi2O3/GO 

258 assisted A+P process, while 65% and 64% removal were observed in the case of Eu3+-ZnO and 

259 ZnO, respectively. Also, 78,  55,  20, and  2 mg/L  of CO2 were estimated during mineralization 

260 of  DMP using Eu3+-ZnO/Bi2O3/GO, Eu3+-ZnO, Bi2O3, and  GO photocatalyst, respectively. Both 

261 COD and CO2 estimations are in agreement with each other.  This confirms the complete 

262 mineralization of DMP into CO2 and H2O. 
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263 To explore the intermediate formed during the degradation of DMP, the HPLC analysis were 

264 estimated at different time intervals of 0h, 2h, 4h, 6h, 8h,10, respectively.  After exposure to visible 

265 light, the decrease in intensity of peak at retention time nearly at 12 min was noticed for DMP as 

266 displayed in Fig 8c. Further, a group of new peaks (circled in Fig. 8c) appeared in between 2 to 4 

267 minutes which subsequently vanished after certain time interval. The appearance of these peaks 

268 can be ascribed to the intermediates, developed during the mineralization process. In LCMS, peaks 

269 at 122, 150, 182, 108, 94, 88 116, and 46 shown in Fig. 9d were ascribed to 2,4-DMP, 2-hydroxy-5-

270 formylbenzaldehyde, 4-hydroxyisophthalic acid, benzoquinone, phenol, oxalic acid, Maleic acid, 

271 and formic acid, respectively.

272 3.5. Band diagram and possible degradation mechanism 

273 In order to understand the basic mechanism of enhanced photocatalysis in Eu3+-ZnO/Bi2O-

274 3/GO, band positions of conduction band (CB) and valance band (VB) were determined exploiting 

275 Eq. (5) and (6) [34, 35]: 

276 𝐸𝑉𝐵 = 𝜒 -  𝐸𝑒 +  0.5 𝐸𝑔                                                                                                                                  (5)

277  =  𝐸𝐶𝐵 𝐸𝑉𝐵 -  𝐸𝑔                                                                                                                                                       (6)

278 Where,  represents the band gap of photocatalyst, Ee is equal to a constant value of 4.5 𝐸𝑔
279 eV i.e. energy of free electron, and  is electronegativity of semiconductor. The Eg and  for Eu3+-𝜒 𝜒
280 ZnO were 3.15 and 5.79 eV while for Bi2O3 it was found to be 1.8 and 5.59 eV, respectively [36-

281 38]. The locations of VB and CB in Eu3+-ZnO were 2.8 and -0.35 eV, respectively [36].  The 

282 position of VB and CB in Bi2O3 was found to be 1.30 and -0.54 eV, respectively [38].The band 

283 position of Eu3+-ZnO and Bi2O3 was suited for formation of type II heterojunction with staggered 

284 band position. The scavenging examinations were conducted by utilizing isopropyl alcohol (IPA), 
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285 benzoquinone (BZQ), ammonium oxalate (AO), and Cr(VI) ion  as hydroxyl radicals (OH•), 

286 superoxide radicals (O2
•¯), holes (h+

VB) and electrons (e¯CB)  scavengers, respectively [39].The 

287 removal efficiencies of 20, 54, 92, and 95 % were recorded in IPA, BZQ, Cr(VI), and AO, 

288 respectively as shown in (Fig. S3).  The presence of Cr(VI) and AO had no remarkable influence 

289 on photocatalytic activity of Eu3+-ZnO/Bi2O3/GO. During the scavenging experiment, whereas, 

290 OH• and O2
•¯ radicals showed the highest oxidizing strength for the degradation of DMP. The 

291 mechanism through which the new photocatalyst can mineralize DMP can be explained as follows 

292 (Fig. 9). Under visible light, holes, and electrons were produced in valance and conduction band 

293 of ZnO and Bi2O3 semiconductor, respectively. The migration of charge carrier takes place from 

294 the VB of Eu3+-ZnO to VB of Bi2O3 in accordance with the position of its band potential. The band 

295 position of Eu3+-ZnO and Bi2O3 was suited for formation of type II heterojunction with staggered 

296 band position. At the same time, photo-excited electrons migrate from CB of Bi2O3 to CB of Eu3+-

297 ZnO [40].  Due to this transfer, the recombining rate of photo-generated electron-hole pairs was 

298 diminished to a greater extent. The reaction of CB electrons of ZnO with adsorbed molecular O2 

299 led to production of superoxide (O2
•¯) radicals on the surface. The hole in VB of Bi2O3 reacts with 

300 the H2O molecule to produce hydroxyl radicals. The hydroxyl radicals and superoxide ultimately 

301 oxidized DMP into CO2 and H2O. Based on the obtained results, Eu3+-ZnO/Bi2O3/GO  emerged 

302 as a potential photo-catalyst for degradation of  DMP present in water. 

303 Recycling efficiency of the photocatalyst is very crucial for its long-term application in 

304 water purification process. The photo-catalyst was separated after each cycle thorough 

305 centrifugation process and utilized for the next photocatalytic cycle. After six catalytic cycles, the 

306 photo-efficiency of Eu3+-ZnO/Bi2O3/GO was reduced from 98 to 89% (Fig. S4a). Furthermore, 

307 XRD, EDX and FITR analysis of Eu3+-ZnO/Bi2O3/GO was performed (Fig. S4(b-d)). XRD, EDX 
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308 and FTIR spectra of Eu3+-ZnO/Bi2O3/GO did not show any significant change in the crystalline 

309 structure of the ternary heterojunction even after six catalytic cycles. It indicates the long-term 

310 stability of prepared photocatalyst for DMP degradation.  

311 3.6. Photocatalytic antibacterial activity of Eu+3-ZnO/Bi2O3/GO

312 The photocatalytic antibacterial activity of Eu+3-ZnO/Bi2O3/GO was assessed using E. coli 

313 as model bacterium under visible light. As shown in Fig 10a the percentage killing dramatically 

314 increased to 90%, on exposure of photocatalyst towards the source of visible light for 60 min. 

315 However, 10 % cell viability of E. coli were observed for 3 mg/ml of Eu+3-ZnO/Bi2O3/GO under 

316 visible light Fig. 10b. The results clearly indicates the strong antibacterial activity of ternary 

317 photocatalyst against gram negative strains. Generation of ROS (e-, h+ O2
•¯, OH•) during the 

318 photocatalytic process plays a crucial role in photocatalytic antibacterial performance [41]. Thus, 

319 to explore the role of generated ROS, scavenging experiments were performed to traps the ROS 

320 as shown in Fig. 10c. Isopropyl alcohol, ammonium oxalate, Cr(VI), and benzoquinone were used 

321 as scavengers for hydroxyl radical, holes, electron, and superoxide radical anion, respectively [42-

322 43]. It can be clearly depicted from Fig. 10c that hydroxyl radical and superoxide radical were the 

323 chief oxidizing species responsible for antibacterial activity on 0.5mM optimized scavenging 

324 concentration [16]. Addition of isopropanol and benzoquinone traps the OH• and O2
•¯ from the 

325 reaction system, thus found very small decrease in cell viability.

326 4. Conclusion

327 In summary, Eu3+-ZnO/Bi2O3/GO a ternary heterojunction was successfully fabricated via 

328 precipitation method. The photocatlytic efficiency of type-II heterojunction were eveluated against 

329 DMP and antibacterial property were assessed against E. coli under visible light source. Doping 

330 of ZnO with Eu3+ lowers the band gap of ZnO as compared to un-doped ZnO, further confirmed 

331 by band gap analysis. In the ternary heterojunction Bi2O3 and graphene oxide sheets traps electron 

332 from ZnO conduction band, thereby decreasing rate of recombination as validate by PL results. 

333 Moreover, integration of Eu3+-ZnO with Bi2O3 extend the absorption towards visible region. With 
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334 the simultaneous adsorption and photodegradation (A+P) process, the novel ternary heterojunction 

335 was capable of degrading 98 % of DMP in 100 min. Nearly, 78% of CO2 removal were estimated 

336 for DMP mineralization which further aid the mineralization process. The extent of mineralization 

337 also established by HPLC and LCMS analysis. Similarly, nearly 90% of E. coli were killed when 

338 the photocatalyst were exposed to visible light source for 60 min.  The mineralization obeys 

339 pseudo-first order model. Further, scavenging experiments reveals that OH˙ and O2˙¯ were the 

340 principal oxidizing species responsible for mineralization. Also, the nanocomposites were 

341 recyclable up to six consecutive cycles this maintain the cost effectiveness of the photocatalyst. 

342 Thus, Eu3+-ZnO/Bi2O3/GO nanocomposites can be easily applied for the detoxification of 

343 pollutant present in water.
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Fig. 1. FESEM images of (a) GO (b) magnified image of  slected portion of (a), (c) Eu3+-

ZnO/Bi2O3/GO and (d) magnified image of  slected portion of (c).

Fig. 2.(a) TEM  images of Eu3+-ZnO/Bi2O3/GO (b) magnified image of  slected portion of (a), 

(c) SAED pattern of Eu3+-ZnO/Bi2O3/GO and  (d) planar spacing of the composite.



Fig. 3. XRD and FTIR spectra of Eu3+-ZnO/Bi2O3/GO nanocomposite.

Fig. 4.  XPS spectra  of  Eu3+-ZnO/Bi2O3/GO nanocomposite.



Fig. 5. (a) UV-visible analysis,  (b) Band gap calcluation, (c) photoluminescence anlysis and (d) 

BET adsorption-desorption isotherms of  Eu3+-ZnO/Bi2O3/GO.

Fig. 6. (a) Photocatalytic degrdation of  DMP and (b) adsoprtional removal of DMP using  Eu3+-

ZnO/Bi2O3/GO [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1× 10-3 mol dm-3; 

[photocatalyst] = 50 mg/100 mL; and intensity of light = 750 lx].



Fig. 7. Effect of adosprtion on photodegrdation of  DMP using Eu3+-ZnO/Bi2O3/GO. [Reaction 

conditions: initial reaction pH= 4.0; [DMP] = 1× 10-3 mol dm-3; [photocatalyst] = 50 mg/100 mL; 

and intensity of light = 750 lx]. 



Fig. 8. (a) COD removal (b) CO2 estimation, (c)  HPLC and (d) LCMS analysis of Eu3+ ZnO/Bi2O-

3/GO [Reaction conditions: initial reaction pH= 4.0; [DMP] = 1× 10-3 mol dm-3; [photocatalyst] = 

50 mg/100 mL; and intensity of light = 750 lx]. 

Fig. 9. Mechanistic view for enmanced   photocatalytic degradation of DMP

Fig. 10. (a) Antibacterial study of Eu+3-ZnO/Bi2O3/GO against E. coli by CFU method in the 

presence of visible light, (b) percentage cell viability under different time of light exposure of 



Eu+3-ZnO/Bi2O3/GO, (c) Effect of radical scavengers on photocatalytic antibacterial activity of 

Eu+3-ZnO/Bi2O3/GO. [Reaction time = 1 h; light intensity = 750 lx; (c) Scavenger concentration: 

0.5mM of isopropanol, benzoquinone, ammonium oxalate, Cr(VI) for 0.5 mg/ml of Eu+3-

ZnO/Bi2O3/GO under solar light irradiation].



Supplementary  Figures (SSSCIE_2020_148R2)

Fig. S1.  EDX spectrum  o f  Eu3+-ZnO/Bi2O3/GO nanocomposite.

Fig. S2. Raman analysis of Graphite and graphene oxide.



Fig. S3. Effect of radical scavengers on DMP degradation by using Eu3+-ZnO/Bi2O3/GO.

Fig. S4. (a) Recycle efficieny of Eu3+-ZnO/Bi2O3/GO (b) FTIR spectra of  Eu3+-ZnO/Bi2O-

3/GO after photocatalysis (c) EDX analysis of  Eu3+-ZnO/Bi2O3/GO after photocatalysis and 

(d) XRD pattern of  Eu3+-ZnO/Bi2O3/GO before and after photocatalysis [Reaction conditions: 

initial reaction pH= 4.0; [DMP] = 1× 10-3 mol dm-3; [photocatalyst] = 50 mg/100 mL; and 

intensity of light = 750 lx].


