6 research outputs found

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.Peer reviewe

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine

    Neuron-astrocyte transmitophagy is altered in Alzheimer's disease

    Get PDF
    Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuronsupporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.Peer reviewe

    C9orf72 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology and synaptic dysfunction

    No full text
    Abstract Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of progressive neurodegenerative syndromes. To date, no validated biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. The most common genetic cause underlying FTLD and amyotrophic lateral sclerosis (ALS) is a hexanucleotide repeat expansion in the C9orf72 gene (C9-HRE). FTLD is accompanied by changes in several neurotransmitter systems, including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems and many clinical symptoms can be explained by disturbances in these systems. Here, we aimed to elucidate the effects of the C9-HRE on synaptic function, molecular composition of synapses, and dendritic spine morphology. We overexpressed the pathological C9-HRE in cultured E18 mouse primary hippocampal neurons and characterized the pathological, morphological, and functional changes by biochemical methods, confocal microscopy, and live cell calcium imaging. The C9-HRE-expressing neurons were confirmed to display the pathological RNA foci and DPR proteins. C9-HRE expression led to significant changes in dendritic spine morphologies, as indicated by decreased number of mushroom-type spines and increased number of stubby and thin spines, as well as diminished neuronal branching. These morphological changes were accompanied by concomitantly enhanced susceptibility of the neurons to glutamate-induced excitotoxicity as well as augmented and prolonged responses to excitatory stimuli by glutamate and depolarizing potassium chloride as compared to control neurons. Mechanistically, the hyperexcitation phenotype in the C9-HRE-expressing neurons was found to be underlain by increased activity of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors. Our results are in accordance with the idea suggesting that C9-HRE is associated with enhanced excitotoxicity and synaptic dysfunction. Thus, therapeutic interventions targeted to alleviate synaptic disturbances might offer efficient avenues for the treatment of patients with C9-HRE-associated FTLD
    corecore