6 research outputs found

    Role of Nitrogen and Yttrium Contents in Manufacturing (Cr, Y)Nx Film Nanostructures

    Get PDF
    The high-power impulse magnetron sputtering (HiPIMS) technique was applied to deposit multilayer-like (Cr, Y)N(x) coatings on AISI 304L stainless steel, using pendular substrate oscillation and a Cr-Y target and varying the nitrogen flow rate from 10 to 50 sccm. The microstructure, mechanical and tribological properties were investigated by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, instrumented nano-hardness, and wear tests. The columnar grain structure became highly segmented and nanosized due to pendular substrate oscillation and the addition of yttrium. The deposition rate increased continuously with the growing nitrogen flow rate. The increase in nitrogen flow from 10 to 50 sccm increased the hardness of the coatings (Cr, Y)N(x), with a maximum hardness value of 32.7 GPa for the coating (Cr, Y)N(x) with a nitrogen flow of 50 sccm, which greatly surpasses the hardness of CrN films with multilayer-like (Cr, Y)N(x) coatings architecture. The best mechanical and tribological performance was achieved for a nitrogen flow rate of 50 sccm. This was enabled by more elevated compressive stresses and impact energies of the impinging ions during film growth, owing to an increase of HiPIMS peak voltage with a rising N2/Ar ratio

    Tailoring the Hybrid Magnetron Sputtering Process (HiPIMS and dcMS) to Manufacture Ceramic Multilayers: Powering Conditions, Target Materials, and Base Layers

    Get PDF
    The mechanical and wear behavior of CrN/CrAlN multilayers were improved by tailoring the experimental conditions of a hybrid magnetron sputtering process based on a high-power impulse (HiPIMS) and two direct current magnetron sputtering (dcMS) power supplies. To this end, the influence of the base layer and of the combination of Cr and CrAl targets, which were switched to the dcMS and HiPIMS power supplies in different configurations, were investigated with respect to the growth of ceramic CrN/CrAlN multilayers onto commercial gas-nitrided diesel piston rings. The microstructure, grain morphology, and mechanical properties were evaluated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and instrumented nanoindentation. Bench wear tests simulating the operation of a combustion engine were conducted against a gray cast iron cylinder liner under reciprocating conditions using 0W20 oil as a lubricating agent enriched with Al2_{2}O3_{3} particles. The results revealed a significant increase in hardness, resistance to plastic strain, and wear resistance when two CrAl targets were switched to a HiPIMS and a dcMS power supply, and a Cr target was powered by another dcMS power supply. The compressive coating stresses were slightly reduced due to the soft Cr base layer that enabled stress relief within the multilayer. The proposed concept of hybrid magnetron sputtering outperformed the commercial PVD coatings of CrN for diesel piston rings manufactured by cathodic arc evaporation

    Role of Nitrogen and Yttrium Contents in Manufacturing (Cr, Y)Nx Film Nanostructures

    No full text
    The high-power impulse magnetron sputtering (HiPIMS) technique was applied to deposit multilayer-like (Cr, Y)Nx coatings on AISI 304L stainless steel, using pendular substrate oscillation and a Cr-Y target and varying the nitrogen flow rate from 10 to 50 sccm. The microstructure, mechanical and tribological properties were investigated by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, instrumented nano-hardness, and wear tests. The columnar grain structure became highly segmented and nanosized due to pendular substrate oscillation and the addition of yttrium. The deposition rate increased continuously with the growing nitrogen flow rate. The increase in nitrogen flow from 10 to 50 sccm increased the hardness of the coatings (Cr, Y)Nx, with a maximum hardness value of 32.7 GPa for the coating (Cr, Y)Nx with a nitrogen flow of 50 sccm, which greatly surpasses the hardness of CrN films with multilayer-like (Cr, Y)Nx coatings architecture. The best mechanical and tribological performance was achieved for a nitrogen flow rate of 50 sccm. This was enabled by more elevated compressive stresses and impact energies of the impinging ions during film growth, owing to an increase of HiPIMS peak voltage with a rising N2/Ar ratio

    Tailoring the Hybrid Magnetron Sputtering Process (HiPIMS and dcMS) to Manufacture Ceramic Multilayers: Powering Conditions, Target Materials, and Base Layers

    No full text
    The mechanical and wear behavior of CrN/CrAlN multilayers were improved by tailoring the experimental conditions of a hybrid magnetron sputtering process based on a high-power impulse (HiPIMS) and two direct current magnetron sputtering (dcMS) power supplies. To this end, the influence of the base layer and of the combination of Cr and CrAl targets, which were switched to the dcMS and HiPIMS power supplies in different configurations, were investigated with respect to the growth of ceramic CrN/CrAlN multilayers onto commercial gas-nitrided diesel piston rings. The microstructure, grain morphology, and mechanical properties were evaluated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and instrumented nanoindentation. Bench wear tests simulating the operation of a combustion engine were conducted against a gray cast iron cylinder liner under reciprocating conditions using 0W20 oil as a lubricating agent enriched with Al2O3 particles. The results revealed a significant increase in hardness, resistance to plastic strain, and wear resistance when two CrAl targets were switched to a HiPIMS and a dcMS power supply, and a Cr target was powered by another dcMS power supply. The compressive coating stresses were slightly reduced due to the soft Cr base layer that enabled stress relief within the multilayer. The proposed concept of hybrid magnetron sputtering outperformed the commercial PVD coatings of CrN for diesel piston rings manufactured by cathodic arc evaporation

    Titanium Coating with Hydroxyapatite and Chitosan Doped with Silver Nitrate

    No full text
    <div><p>Biomaterials are effective alternatives for tissue substitution, including the bone tissue, since they do not pose risks of transmission of diseases or immune rejection. Nowadays, there is an interest in new materials capable of being associated with other substances which favor bone formation, especially natural biopolymers, in particular chitosan, which may present a potential for repairing bone defects and forms films that adhere to metal surfaces. Titanium, despite being a material greatly employed in implants because of its excellent physical properties, does not present bioactive characteristics, making it necessary to use methods of surface modification to enhance its biological response, favoring bone formation. This work aims at studying commercially pure titanium (cp-Ti) coating with chitosan using the biomimetic method and the evaluation of the effects of process variables as substrate surface conditions. Subsequently, the incorporation of AgNO3 was studied and its effects on corrosion resistance were evaluated. To evaluate the coating process, several tests were conducted, such as scanning electron microscopy, X-ray diffraction and infrared spectroscopy. From the results obtained, the efficacy of the chitosan film in inhibiting the corrosion of the metals is concluded, which was the target of this study, thus justifying its use for osseointegration and in several implants.</p></div
    corecore