305 research outputs found
Recommended from our members
A Cre-lox approach for transient transgene expression in neural precursor cells and long-term tracking of their progeny in vitro and in vivo.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Neural precursor cells (NPCs) can be isolated from various regions of the postnatal central nervous system (CNS). Manipulation of gene expression in these cells offers a promising strategy to manipulate their fate both in vitro and in vivo. In this study, we developed a technique that allows the transient manipulation of single/multiple gene expression in NPCs in vitro, and the long-term tracking of their progeny both in vitro and in vivo. RESULTS: In order to combine the advantages of transient transfection with the long-term tracking of the transfected cells progeny, we developed a new approach based on the cre-lox technology. We first established a fast and reliable protocol to isolate and culture NPCs as monolayer, from the spinal cord of neonatal transgenic Rosa26-YFP cre-reporter mice. These cells could be reliably transfected with single/multiple plasmids by nucleofection. Nucleofection with mono- or bicistronic plasmids containing the Cre recombinase gene resulted in efficient recombination and the long-term expression of the YFP-reporter gene. The transient cre-expression was non-toxic for the transfected cells and did not alter their intrinsic properties. Finally, we demonstrated that cre-transfected cells could be transplanted into the adult brain, where they maintained YFP expression permitting long-term tracking of their migration and differentiation. CONCLUSION: This approach allows single/multiple genes to be manipulated in NPCs, while at the same time allowing long-term tracking of the transfected cells progeny to be analyzed both in vitro and in vivo
Mosaic Subventricular Origins of Forebrain Oligodendrogenesis
In the perinatal as well as the adult CNS, the subventricular zone (SVZ) of the forebrain is the largest and most active source of neural stem cells (NSCs) that generates neurons and oligodendrocytes (OLs), the myelin forming cells of the CNS. Recent advances in the field are beginning to shed light regarding SVZ heterogeneity, with the existence of spatially segregated microdomains that are intrinsically biased to generate phenotypically distinct neuronal populations. Although most research has focused on this regionalization in the context of neurogenesis, newer findings underline that this also applies for the genesis of OLs under the control of specific patterning molecules. In this mini review, we discuss the origins as well as the mechanisms that induce and maintain SVZ regionalization. These come in the flavor of specific signaling ligands and subsequent initiation of transcriptional networks that provide a basis for subdividing the SVZ into distinct lineage-specific microdomains. We further emphasize canonical Wnt and FGF2 as essential signaling pathways for the regional genesis of OL progenitors from NSCs of the dorsal SVZ. This aspect of NSC biology, which has so far received little attention, may unveil new avenues for appropriately recruiting NSCs in demyelinating diseases
Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural Stem cell specification into oligodendrocytes and glutamatergic neurons
In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs
Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis
<p>Abstract</p> <p>Background</p> <p>Postnatal olfactory bulb (OB) neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs) located in the walls of the lateral ventricle (LV). Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed.</p> <p>Results</p> <p>In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons.</p> <p>Conclusions</p> <p>Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification.</p
Early Decline in Progenitor Diversity in the Marmoset Lateral Ventricle
The lateral ventricle (LV) of the adult rodent brain harbors neural stem cells (NSCs) that continue to generate new neurons throughout life. NSCs located in defined areas of the LV walls generate progenitors with distinct transcriptional profiles that are committed to specific neuronal fates. Here, we assessed if such diversity of NSCs also exist in the adult common marmoset, a widely used primate species in basic and clinical neuroscience research. We first investigated the 3D distributions of proliferative progenitors and committed neuroblasts in the marmoset forebrain. In addition to these maps, we assessed the spatial presence of divergent progenitor populations based on their expression of defined transcription factors, that is, Dlx2, Pax6, Tbr2, and Ngn2 which are differentially expressed by Îł-aminobutyric acidergic versus glutamatergic progenitors in the adult rodent forebrain. In striking contrast to rodents, glutamatergic progenitors were only sparse in neonates and absent from the adult LV, whilst present in the hippocampus. Our analyses highlight major differences in the diversity of NSCs of the marmoset LV compared with rodents and emphasize the need to address NSCs diversity in evolutionary higher order mammals concomitantly to rodent
E-proteins orchestrate the progression of neural stem cell differentiation in the postnatal forebrain
Background
Neural stem cell (NSC) differentiation is a complex multistep process that persists in specific regions of the postnatal forebrain and requires tight regulation throughout life. The transcriptional control of NSC proliferation and specification involves Class II (proneural) and Class V (Id1-4) basic helix-loop-helix (bHLH) proteins. In this study, we analyzed the pattern of expression of their dimerization partners, Class I bHLH proteins (E-proteins), and explored their putative role in orchestrating postnatal subventricular zone (SVZ) neurogenesis.
Results
Overexpression of a dominant-negative form of the E-protein E47 (dnE47) confirmed a crucial role for bHLH transcriptional networks in postnatal neurogenesis by dramatically blocking SVZ NSC differentiation. In situ hybridization was used in combination with RT-qPCR to measure and compare the level of expression of E-protein transcripts (E2-2, E2A, and HEB) in the neonatal and adult SVZ as well as in magnetic affinity cell sorted progenitor cells and neuroblasts. Our results evidence that E-protein transcripts, in particular E2-2 and E2A, are enriched in the postnatal SVZ with expression levels increasing as cells engage towards neuronal differentiation. To investigate the role of E-proteins in orchestrating lineage progression, both in vitro and in vivo gain-of-function and loss-of-function experiments were performed for individual E-proteins. Overexpression of E2-2 and E2A promoted SVZ neurogenesis by enhancing not only radial glial cell differentiation but also cell cycle exit of their progeny. Conversely, knock-down by shRNA electroporation resulted in opposite effects. Manipulation of E-proteins and/or Ascl1 in SVZ NSC cultures indicated that those effects were Ascl1 dependent, although they could not solely be attributed to an Ascl1-induced switch from promoting cell proliferation to triggering cell cycle arrest and differentiation.
Conclusions
In contrast to former concepts, suggesting ubiquitous expression and subsidiary function for E-proteins to foster postnatal neurogenesis, this work unveils E-proteins as being active players in the orchestration of postnatal SVZ neurogenesis.ISSN:1749-810
Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells
<p>Abstract</p> <p>Background</p> <p>While the diversity and spatio-temporal origin of olfactory bulb (OB) GABAergic interneurons has been studied in detail, much less is known about the subtypes of glutamatergic OB interneurons.</p> <p>Results</p> <p>We studied the temporal generation and diversity of Neurog2-positive precursor progeny using an inducible genetic fate mapping approach. We show that all subtypes of glutamatergic neurons derive from Neurog2 positive progenitors during development of the OB. Projection neurons, that is, mitral and tufted cells, are produced at early embryonic stages, while a heterogeneous population of glutamatergic juxtaglomerular neurons are generated at later embryonic as well as at perinatal stages. While most juxtaglomerular neurons express the T-Box protein Tbr2, those generated later also express Tbr1. Based on morphological features, these juxtaglomerular cells can be identified as tufted interneurons and short axon cells, respectively. Finally, targeted electroporation experiments provide evidence that while the majority of OB glutamatergic neurons are generated from intrabulbar progenitors, a small portion of them originate from extrabulbar regions at perinatal ages.</p> <p>Conclusions</p> <p>We provide the first comprehensive analysis of the temporal and spatial generation of OB glutamatergic neurons and identify distinct populations of juxtaglomerular interneurons that differ in their antigenic properties and time of origin.</p
Somatosensory and motor evoked potentials in dogs with chronic severe thoracolumbar spinal cord injury
ome dogs that become paraplegic after severe spinal cord injury regain ambulation on the pelvic limbs despite permanent loss of pelvic limb sensation, a phenomenon termed âspinal walkingâ. Plastic changes in spinal cord circuitry are thought to mediate this form of recovery but the precise circumstances that favor its development are not known. More information on this phenomenon would be helpful because it might be possible to coax more function in chronically paraplegic animals so improving their, and their ownersâ, quality of life. We analysed the correlation of âspinal walkingâ and pelvic limb pain sensation with recordings of scalp and spinal somatosensory and transcranial magnetic motor evoked potentials. We prospectively examined 94 paraplegic dogs (including 53 Dachshunds) that had sustained T10 to L3 spinal cord injury (including 78 dogs with acute intervertebral disc herniation) at a median time of 12.0 months from injury.
Nine dogs exhibited âspinal walkingâ and nine other individuals had intact pelvic limb pain sensation. Of 34 tested, 12 dogs had recordable scalp somatosensory evoked potentials. Fifty-three of 59 tested dogs had recordable spinal somatosensory evoked potentials, but only six had recordable potentials cranial to the lesion. Twenty-two of 94 tested dogs had recordable transcranial magnetic motor evoked potentials in the pelvic limb(s). There was no apparent association between intact evoked potential recording and either spinal walking or intact pain sensation. We conclude that factors other than influence, or lack of influence, of input carried by spinal cord long tracts mediate recovery of spinal walking
- âŚ