1,633 research outputs found

    Uncertainties in nuclear transition matrix elements for neutrinoless ββ\beta \beta decay II: the heavy Majorana neutrino mass mechanism

    Full text link
    Employing four different parametrization of the pairing plus multipolar type of effective two-body interaction and three different parametrizations of Jastrow-type of short range correlations, the uncertainties in the nuclear transition matrix elements MN(0ν)M_{N}^{(0\nu)} due to the exchange of heavy Majorana neutrino for the 0+0+0^{+}\rightarrow 0^{+} transition of neutrinoless double beta decay of 94^{94}Zr, 96^{96}Zr, 98^{98}Mo, 100^{100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes in the PHFB model are estimated to be around 25%. Excluding the nuclear transition matrix elements calculated with Miller-Spenser parametrization of Jastrow short range correlations, the uncertainties are found to be 10%-15% smaller

    Lichen flora of Surinsar-Mansar wildlife sanctuary, J&K

    Get PDF
    The present study conducted to enumerate the lichens from the so far unexplored Surinsar-Mansar wildlife sanctuary, J&K, revealed the presence of 30 species belonging to 18 genera from 14 families. The species belonged to different growth forms (21 crustose, 8 foliose and 1 fruticose) and are also growing on various substrata (corticolous-17 and saxicolous-13). Mangifera indica hosted the maximum number (12) while Pinus roxburghii did not host any lichen species in this area

    Constraining Form Factors with the Method of Unitarity Bounds

    Full text link
    The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.Comment: 12 pages, 2 figures; Lecture given at the DAE-BRNS Workshop on Hadron Physics, Bhabha Atomic Research Centre, Mumbai, India, October 31-November 4, 2011, submitted to Proceeding

    Preliminary study of feasibility of an experiment looking for excited state double beta transitions in tin

    Full text link
    An attempt to study the feasibility of a new experiment to search for double beta decay in 112^{112}Sn and 124^{124}Sn was carried out by using ultra-low background HPGe detector (244 cm3^{3}) inside the Gran Sasso National Laboratory (LNGS) of the INFN (Italy). A small sample of natural Sn was examined for 2367.5 h. The radioactive contamination of the sample has been estimated. The data has also been considered to calculate the present sensitivity for the proposed search; half-life limits \sim 1017101810^{17} - 10^{18} years for β+\beta^{+}EC and EC-EC processes in 112^{112}Sn and \sim 101810^{18} years for ββ\beta^{-}\beta^{-} transition in 124^{124}Sn were measured. In the last section of the paper the enhancement of the sensitivity for a proposed experiment with larger mass to reach theoretically estimated values of half-lives is discussed.Comment: 20 pages, 11 figures, 4 tables, accepted for publication in NIMA (in press

    Nuclear deformation and neutrinoless double-β\beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd nuclei in mass mechanism

    Full text link
    The (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+0+0^{+}\to 0^{+} transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the ββ\beta ^{-}\beta ^{-} decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced B(E2B(E2:0+2+)0^{+}\to 2^{+}) transition probabilities, quadrupole moments Q(2+)Q(2^{+}), gyromagnetic factors g(2+)g(2^{+}) as well as half-lives T1/22νT_{1/2}^{2\nu} for the 0+0+0^{+}\to 0^{+} transition and the available experimental data. In the present work, we study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay for the 0+0+0^{+}\to 0^{+} transition in the mass mechanism and extract limits on effective mass of light as well as heavy neutrinos from the observed half-lives T1/20ν(0+0+)T_{1/2}^{0\nu}(0^{+}\to 0^{+}) using nuclear transition matrix elements calculated with the same set of wave functions. Further, the effect of deformation on the nuclear transition matrix elements required to study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay in the mass mechanism is investigated. It is noticed that the deformation effect on nuclear transition matrix elements is of approximately same magnitude in (ββ)2ν(\beta ^{-}\beta ^{-})_{2\nu} and (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay.Comment: 15 pages, 1 figur
    corecore