38 research outputs found

    The Forces behind Directed Cell Migration

    Full text link
    Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration

    Durotaxis

    Full text link
    In this Primer, Sunyer and Trepat introduce durotaxis, the mode of migration by which cells follow gradients of extracellular matrix stiffness

    Monitoring developmental force distributions in reconstituted embryonic epithelia.

    Get PDF
    The way cells are organized within a tissue dictates how they sense and respond to extracellular signals, as cues are received and interpreted based on expression and organization of receptors, downstream signaling proteins, and transcription factors. Part of this microenvironmental context is the result of forces acting on the cell, including forces from other cells or from the cellular substrate or basement membrane. However, measuring forces exerted on and by cells is difficult, particularly in an in vivo context, and interpreting how forces affect downstream cellular processes poses an even greater challenge. Here, we present a simple method for monitoring and analyzing forces generated from cell collectives. We demonstrate the ability to generate traction force data from human embryonic stem cells grown in large organized epithelial sheets to determine the magnitude and organization of cell-ECM and cell-cell forces within a self-renewing colony. We show that this method can be used to measure forces in a dynamic hESC system and demonstrate the ability to map intracolony protein localization to force organization

    Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions

    Full text link
    The Heisenberg nearest neighbour antiferromagnet on the pyrochlore (3D) lattice is highly frustrated and does not order at low temperature where spin-spin correlations remain short ranged. Dzyaloshinsky-Moriya interactions (DMI) may be present in pyrochlore compounds as is shown, and the consequences of such interactions on the magnetic properties are investigated through mean field approximation and monte carlo simulations. It is found that DMI (if present) tremendously change the low temperature behaviour of the system. At a temperature of the order of the DMI a phase transition to a long range ordered state takes place. The ordered magnetic structures are explicited for the different possible DMI which are introduced on the basis of symmetry arguments. The relevance of such a scenario for pyrochlore compounds in which an ordered magnetic structure is observed experimentally is dicussed

    Collective cell durotaxis emerges from long-range intercellular force transmission

    Get PDF
    The ability of cells to follow gradients of extracellular matrix stiffness—durotaxis—has been implicated in development, fibrosis, and cancer. Here, we found multicellular clusters that exhibited durotaxis even if isolated constituent cells did not. This emergent mode of directed collective cell migration applied to a variety of epithelial cell types, required the action of myosin motors, and originated from supracellular transmission of contractile physical forces. To explain the observed phenomenology, we developed a generalized clutch model in which local stick-slip dynamics of cell-matrix adhesions was integrated to the tissue level through cell-cell junctions. Collective durotaxis is far more efficient than single-cell durotaxis; it thus emerges as a robust mechanism to direct cell migration during development, wound healing, and collective cancer cell invasion.Peer ReviewedPostprint (author's final draft

    Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy

    Get PDF
    Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 ± 12.0 nN (mean ± SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 µM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 µM, 30 min) and Rho kinase with Y-27632 (10 µM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung

    Towards a robust criterion of anomalous diffusion

    Full text link
    Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian -- or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.Comment: 13 pages, 6 figures, RevTe

    Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature

    Get PDF
    Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory

    Collective cell durotaxis emerges from long-range intercellular force transmission

    Get PDF
    The ability of cells to follow gradients of extracellular matrix stiffness-durotaxis-has been implicated in development, fibrosis, and cancer. Here, we found multicellular clusters that exhibited durotaxis even if isolated constituent cells did not. This emergent mode of directed collective cell migration applied to a variety of epithelial cell types, required the action of myosin motors, and originated from supracellular transmission of contractile physical forces. To explain the observed phenomenology, we developed a generalized clutch model in which local stick-slip dynamics of cell-matrix adhesions was integrated to the tissue level through cell-cell junctions. Collective durotaxis is far more efficient than single-cell durotaxis; it thus emerges as a robust mechanism to direct cell migration during development, wound healing, and collective cancer cell invasion

    Mapping mechanical stress in curved epithelia of designed size and shape

    Get PDF
    We thank C. Pérez-González, N. Castro, and all of the members of the Roca-Cusachs, Arroyo, and Trepat laboratories for their discussions and support. This work was supported by: Generalitat de Catalunya (Agaur, SGR-2021-01425 to X.T., SGR-2021-00523 to R.S., the CERCA Programme, and “ICREA Academia” award to M.A. and P.R-C.); Spanish Ministry for Science and Innovation MICCINN/FEDER (PID2021- 128635NB-I00, MCIN/AEI/ 10.13039/501100011033 and “ERDF-EU A way of making Europe” to X.T., PID2019-110949GB-I00 to M.A., PID2019- 110298GB-I00 to P.R.-C., PID2021-128674OB-I00, RTI2018-101256-J-I00, and RYC2019-026721-I to R.S.); European Research Council (Adv883739 to X.T., CoG-681434 to M.A.); Fundació la Marató de TV3 (project 201903-30-31-32 to X.T.); Deutsche Forschungsgemeinschaft (DFG GO3403/1-1 to T.G.); IBEC, IRB, and CIMNE are recipients of a Severo Ochoa Award of Excellence from the MINECO; European Commission (H2020-FETPROACT-01-2016-731957 to P.R-C.); La Caixa Foundation (LCF/PR/HR20/52400004 and ID 100010434 under the agreement LCF/ PR/HR20/52400004 to P.R-C. and X.T.). R.S. is a Serra Húnter fellow.The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.Peer ReviewedPostprint (published version
    corecore