28 research outputs found
Music-listening regulates human microRNA expression
Music-listening and performance have been shown to affect human gene expression. In order to further elucidate the biological basis of the effects of music on the human body, we studied the effects of music-listening on gene regulation by sequencing microRNAs of the listeners (Music Group) and their controls (Control Group) without music exposure. We identified upregulation of six microRNAs (hsa-miR-132-3p, hsa-miR-361-5p, hsa-miR-421, hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-25-3p) and downregulation of two microRNAs (hsa-miR-378a-3p, hsa-miR-16-2-3p) in Music Group with high musical aptitude. Some upregulated microRNAs were reported to be responsive to neuronal activity (miR-132, miR-23a, miR-23b) and modulators of neuronal plasticity, CNS myelination, and cognitive functions like long-term potentiation and memory. miR-132 plays a critical role in regulating TAU protein levels and is important for preventing tau protein aggregation that causes Alzheimer's disease. miR-132 andDICER, upregulated after music-listening, protect dopaminergic neurons and are important for retaining striatal dopamine levels. Some of the transcriptional regulators (FOS, CREB1, JUN, EGR1,andBDNF) of the upregulated microRNAs were immediate early genes and top candidates associated with musical traits.BDNFand SNCA, co-expressed and upregulated in music-listening and music-performance, are both are activated by GATA2, which is associated with musical aptitude. Several miRNAs were associated with song-learning, singing, and seasonal plasticity networks in songbirds. We did not detect any significant changes in microRNA expressions associated with music education or low musical aptitude. Our data thereby show the importance of inherent musical aptitude for music appreciation and for eliciting the human microRNA response to music-listening.Peer reviewe
Creative Activities in Music - A Genome-Wide Linkage Analysis
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.Peer reviewe
Detecting signatures of positive selection associated with musical aptitude in the human genome
Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and F-ST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude.Peer reviewe
The results of FBAT/HBAT analyses for the creativity in music (categorical traits).
<p>The most significant findings are shown in bold.</p
The distribution of self-reported creativity in music in the 19 pedigrees.
<p>The distribution of self-reported creativity in music in the 19 pedigrees.</p
The relationship between music test score (KMT, SP and ST) and creativity in music.
<p>The relationship between music test score (KMT, SP and ST) and creativity in music.</p