24 research outputs found

    Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance

    Get PDF
    Copyright © The Author(s) 2021. We establish explicit bounds on the convex distance between the distribution of a vector of smooth functionals of a Gaussian field and that of a normal vector with a positive-definite covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin et al. (Ann Inst Henri Poincaré Probab Stat 46(1):45–58, 2010) for the (smoother) 1-Wasserstein distance, and do not involve any additional logarithmic factor. One of the main tools exploited in our work is a recursive estimate on the convex distance recently obtained by Schulte and Yukich (Electron J Probab 24(130):1–42, 2019). We illustrate our abstract results in two different situations: (i) we prove a quantitative multivariate fourth moment theorem for vectors of multiple Wiener–Itô integrals, and (ii) we characterize the rate of convergence for the finite-dimensional distributions in the functional Breuer–Major theorem.FNR grant APOGee (R-AGR-3585-10) at Luxembourg University; FNR grant FoRGES (R-AGR-3376-10) at Luxembourg University; FNR Grant MISSILe (R-AGR-3410-12-Z) at Luxembourg and Singapore Universities
    corecore