3,888 research outputs found

    Index Policies for Optimal Mean-Variance Trade-Off of Inter-delivery Times in Real-Time Sensor Networks

    Full text link
    A problem of much current practical interest is the replacement of the wiring infrastructure connecting approximately 200 sensor and actuator nodes in automobiles by an access point. This is motivated by the considerable savings in automobile weight, simplification of manufacturability, and future upgradability. A key issue is how to schedule the nodes on the shared access point so as to provide regular packet delivery. In this and other similar applications, the mean of the inter-delivery times of packets, i.e., throughput, is not sufficient to guarantee service-regularity. The time-averaged variance of the inter-delivery times of packets is also an important metric. So motivated, we consider a wireless network where an Access Point schedules real-time generated packets to nodes over a fading wireless channel. We are interested in designing simple policies which achieve optimal mean-variance tradeoff in interdelivery times of packets by minimizing the sum of time-averaged means and variances over all clients. Our goal is to explore the full range of the Pareto frontier of all weighted linear combinations of mean and variance so that one can fully exploit the design possibilities. We transform this problem into a Markov decision process and show that the problem of choosing which node's packet to transmit in each slot can be formulated as a bandit problem. We establish that this problem is indexable and explicitly derive the Whittle indices. The resulting Index policy is optimal in certain cases. We also provide upper and lower bounds on the cost for any policy. Extensive simulations show that Index policies perform better than previously proposed policies

    Exploring many-body localization in quantum systems coupled to an environment via Wegner-Wilson flows

    Full text link
    Inspired by recent experiments on many-body localized systems coupled to an environment, we apply a Flow Equation method to study the problem of a disorder chain of spinless fermions, coupled via density-density interactions to a second clean chain of spinless fermions. In particular, we focus on the conditions for the onset of a many-body localized phase in the clean sector of our model by proximity to the dirty one. We find that a many-body localization proximity effect in the clean component is established when the density of dirty fermions exceeds a threshold value. From the flow equation method we find that, similar to many-body localization in a single chain, the many-body localization proximity effect is also described by an extensive set of local integrals of motion. Furthermore, by tuning the geometry of the inter-chain couplings, we show that the dynamics of the model is ruled, on intermediate time scales, by an emergent set of quasi-conserved charges.Comment: 22 pages, 7 figure

    Pathwise Performance of Debt Based Policies for Wireless Networks with Hard Delay Constraints

    Full text link
    Hou et al have introduced a framework to serve clients over wireless channels when there are hard deadline constraints along with a minimum delivery ratio for each client's flow. Policies based on "debt," called maximum debt first policies (MDF) were introduced, and shown to be throughput optimal. By "throughput optimality" it is meant that if there exists a policy that fulfils a set of clients with a given vector of delivery ratios and a vector of channel reliabilities, then the MDF policy will also fulfill them. The debt of a user is the difference between the number of packets that should have been delivered so as to meet the delivery ratio and the number of packets that have been delivered for that client. The maximum debt first (MDF) prioritizes the clients in decreasing order of debts at the beginning of every period. Note that a throughput optimal policy only guarantees that \begin{small} \liminf_{T \to \infty} \frac{1}{T}\sum_{t=1}^{T} \mathbbm{1}\{\{client nspacketisdeliveredinframe's packet is delivered in frame t} \} \geq q_{i} \end{small}, where the right hand side is the required delivery ratio for client ii. Thus, it only guarantees that the debts of each user are o(T)o(T), and can be otherwise arbitrarily large. This raises the interesting question about what is the growth rate of the debts under the MDF policy. We show the optimality of MDF policy in the case when the channel reliabilities of all users are same, and obtain performance bounds for the general case. For the performance bound we obtain the almost sure bounds on lim suptdi(t)ϕ(t)\limsup_{t\to\infty}\frac{d_{i}(t)}{\phi(t)} for all ii, where ϕ(t)=2tloglogt\phi(t) = \sqrt{2t\log\log t}

    Dielectric properties of Li2O-3B2O3 glasses

    Full text link
    The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition Li2O-3B2O3 (LBO) were investigated in the 100 Hz- 10 MHz frequency range. The dielectric constant and the loss in the low frequency regime were electrode material dependent. Dielectric and electrical relaxations were respectively analyzed using the Cole-Cole and electric modulus formalisms. The dielectric relaxation mechanism was discussed in the framework of electrode and charge carrier (hopping of the ions) related polarization using generalized Cole-Cole expression. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was 0.80 \pm 0.02 eV, which was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. Temperature dependent behavior of the frequency exponent (n) suggested that the correlated barrier hopping model was the most apposite to rationalize the electrical transport phenomenon in Li2O-3B2O3 glasses. These glasses on heating at 933 K/10h resulted in the known non-linear optical phase LiB3O5.Comment: 32 pages, 13 figure
    corecore