1,358 research outputs found

    Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins

    No full text
    Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides). A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out. © 2018 Imhoff, Rahn, Künzel and Neulinger

    Machines and Agency: Understanding the AI Ethics Problem

    Get PDF
    Mankind has long been interested in the unique, the strange, and the new; perhaps nothing more fully encompasses this interest than recent work on developing Artificial Intelligence (AI). With this research, however, comes a great many questions. Are AIs alive? Are AIs moral agents? Can machines be held legally culpable for their actions? These questions, and more, continue to be a topic of much debate in the academic community, and will no doubt remain of interest for years to come. It is the purpose of this research project, however, to investigate the far-reaching effects of this academic debate. While the results of this study remain as yet inconclusive, the field remains ripe for further study and analysis

    The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment

    Get PDF
    The EU-Rotate_N model was developed as a tool to estimate the growth and nitrogen (N) uptake of vegetable crop rotations across a wide range of European climatic conditions and to assess the economic and environmental consequences of alternative management strategies. The model has been evaluated under field conditions in Germany and Norway and under greenhouse conditions in China. The present work evaluated the model using Italian data to evaluate its performance in a warm and dry environment. Data were collected from four 2-year field rotations, which included lettuce (Lactuca sativa L.), fennel (Foeniculum vulgare Mill.), spinach (Spinacia oleracea L.), broccoli (Brassica oleracea L. var. italica Plenck) and white cabbage (B. oleracea convar. capitata var. alba L.); each rotation used three different rates of N fertilizer (average recommended N1, assumed farmer's practice N2=N1+0·3×N1 and a zero control N0). Although the model was not calibrated prior to running the simulations, results for above-ground dry matter biomass, crop residue biomass, crop N concentration and crop N uptake were promising. However, soil mineral N predictions to 0·6 m depth were poor. The main problem with the prediction of the test variables was the poor ability to capture N mineralization in some autumn periods and an inappropriate parameterization of fennel. In conclusion, the model performed well, giving results comparable with other bio-physical process simulation models, but for more complex crop rotations. The model has the potential for application in Mediterranean environments for field vegetable production

    A sensitivity analysis of the prediction of the nitrogen fertilizer requirement of cauliflower crops using the HRI WELL_N computer model

    Get PDF
    HRI WELL_N is an easy to use computer model, which has been used by farmers and growers since 1994 to predict crop nitrogen (N) requirements for a wide range of agricultural and horticultural crops. A sensitivity analysis was carried out to investigate the model predictions of the N fertilizer requirement of cauliflower crops, and, at that rate, the yield achieved, yield response to the fertilizer applied, N uptake, NO3-N leaching below 30 and 90 cm and mineral N at harvest. The sensitivity to four input factors – soil mineral N before planting, mineralization rate of soil organic matter, expected yield and duration of growth – was assessed. Values of these were chosen to cover ranges between 40% and 160% of values typical for field crops of cauliflowers grown in East Anglia. The assessments were made for three soils – sand, sandy loam and silt – and three rainfall scenarios – an average year and years with 144% or 56% of average rainfall during the growing season. The sensitivity of each output variable to each of the input factors (and interactions between them) was assessed using a unique ‘sequential' analysis of variance approach developed as part of this research project. The most significant factors affecting N fertilizer requirement across all soil types/rainfall amounts were soil mineral N before planting and expected yield. N requirement increased with increasing yield expectation, and decreased with increasing amounts of soil mineral N before planting. The responses to soil mineral N were much greater when higher yields were expected. Retention of N in the rooting zone was predicted to be poor on light soils in the wettest conditions suggesting that to maximize N use, plants needed to grow rapidly and have reasonable yield potential. Assessment of the potential impacts of errors in the values of the input factors indicated that poor estimation of, in particular, yield expectation and soil mineral N before planting could lead to either yield loss or an increased level of potentially leachable soil mineral N at harvest. The research demonstrates the benefits of using computer simulation models to quantify the main factors for which information is needed in order to provide robust N fertilizer recommendations

    Positionally dependent ^(15)N fraction factors in the UV photolysis of N_2O determined by high resolution FTIR spectroscopy

    Get PDF
    Positionally dependent fractionation factors for the photolysis of isotopomers of N_2O in natural abundance have been determined by high resolution FTIR spectroscopy at three photolysis wavelengths. Fractionation factors show clear 15N position and photolysis wavelength dependence and are in qualitative agreement with theoretical models but are twice as large. The fractionation factors increase with photolysis wavelength from 193 to 211 nm, with the fractionation factors at 207.6 nm for ^(14)N^(15)N^916)O, ^(15)N^(14)N^(16)O and ^(14)N^(14)N^(18)O equal to −66.5±5‰,−27.1±6‰ and −49±10‰, respectively

    Paramagnon dispersion in β\beta-FeSe observed by Fe LL-edge resonant inelastic x-ray scattering

    Full text link
    We report an Fe LL-edge resonant inelastic x-ray scattering (RIXS) study of the unusual superconductor β\beta-FeSe. The high energy resolution of this RIXS experiment (\approx\,55\,meV FWHM) made it possible to resolve low-energy excitations of the Fe 3d3d manifold. These include a broad peak which shows dispersive trends between 100-200\,meV along the (π,0)(\pi,0) and (π,π)(\pi,\pi) directions of the one-Fe square reciprocal lattice, and which can be attributed to paramagnon excitations. The multi-band valence state of FeSe is among the most metallic in which such excitations have been discerned by soft x-ray RIXS
    corecore