1,332 research outputs found

    The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment

    Get PDF
    The EU-Rotate_N model was developed as a tool to estimate the growth and nitrogen (N) uptake of vegetable crop rotations across a wide range of European climatic conditions and to assess the economic and environmental consequences of alternative management strategies. The model has been evaluated under field conditions in Germany and Norway and under greenhouse conditions in China. The present work evaluated the model using Italian data to evaluate its performance in a warm and dry environment. Data were collected from four 2-year field rotations, which included lettuce (Lactuca sativa L.), fennel (Foeniculum vulgare Mill.), spinach (Spinacia oleracea L.), broccoli (Brassica oleracea L. var. italica Plenck) and white cabbage (B. oleracea convar. capitata var. alba L.); each rotation used three different rates of N fertilizer (average recommended N1, assumed farmer's practice N2=N1+0·3×N1 and a zero control N0). Although the model was not calibrated prior to running the simulations, results for above-ground dry matter biomass, crop residue biomass, crop N concentration and crop N uptake were promising. However, soil mineral N predictions to 0·6 m depth were poor. The main problem with the prediction of the test variables was the poor ability to capture N mineralization in some autumn periods and an inappropriate parameterization of fennel. In conclusion, the model performed well, giving results comparable with other bio-physical process simulation models, but for more complex crop rotations. The model has the potential for application in Mediterranean environments for field vegetable production

    A sensitivity analysis of the prediction of the nitrogen fertilizer requirement of cauliflower crops using the HRI WELL_N computer model

    Get PDF
    HRI WELL_N is an easy to use computer model, which has been used by farmers and growers since 1994 to predict crop nitrogen (N) requirements for a wide range of agricultural and horticultural crops. A sensitivity analysis was carried out to investigate the model predictions of the N fertilizer requirement of cauliflower crops, and, at that rate, the yield achieved, yield response to the fertilizer applied, N uptake, NO3-N leaching below 30 and 90 cm and mineral N at harvest. The sensitivity to four input factors – soil mineral N before planting, mineralization rate of soil organic matter, expected yield and duration of growth – was assessed. Values of these were chosen to cover ranges between 40% and 160% of values typical for field crops of cauliflowers grown in East Anglia. The assessments were made for three soils – sand, sandy loam and silt – and three rainfall scenarios – an average year and years with 144% or 56% of average rainfall during the growing season. The sensitivity of each output variable to each of the input factors (and interactions between them) was assessed using a unique ‘sequential' analysis of variance approach developed as part of this research project. The most significant factors affecting N fertilizer requirement across all soil types/rainfall amounts were soil mineral N before planting and expected yield. N requirement increased with increasing yield expectation, and decreased with increasing amounts of soil mineral N before planting. The responses to soil mineral N were much greater when higher yields were expected. Retention of N in the rooting zone was predicted to be poor on light soils in the wettest conditions suggesting that to maximize N use, plants needed to grow rapidly and have reasonable yield potential. Assessment of the potential impacts of errors in the values of the input factors indicated that poor estimation of, in particular, yield expectation and soil mineral N before planting could lead to either yield loss or an increased level of potentially leachable soil mineral N at harvest. The research demonstrates the benefits of using computer simulation models to quantify the main factors for which information is needed in order to provide robust N fertilizer recommendations

    Spin resonance in the superconducting state of Li1x_{1-x}Fex_{x}ODFe1y_{1-y}Se observed by neutron spectroscopy

    Full text link
    We have performed inelastic neutron scattering measurements on a powder sample of the superconductor lithium iron selenide hydroxide Li1x_{1-x}Fex_{x}ODFe1y_{1-y}Se (x0.16,y0.02x \simeq 0.16, y \simeq 0.02, Tc=41T_{\rm c} = 41\,K). The spectrum shows an enhanced intensity below TcT_{\rm c} over an energy range 0.64×2Δ<E<2Δ0.64\times2\Delta < E < 2\Delta, where Δ\Delta is the superconducting gap, with maxima at the wave vectors Q11.46Q_1 \simeq 1.46\,\AA1^{-1} and Q21.97Q_2 \simeq 1.97\,\AA1^{-1}. The behavior of this feature is consistent with the spin resonance mode found in other unconventional superconductors, and strongly resembles the spin resonance observed in the spectrum of the molecular-intercalated iron selenide, Li0.6_{0.6}(ND2_{2})0.2_{0.2}(ND3_{3})0.8_{0.8}Fe2_{2}Se2_{2}. The signal can be described with a characteristic two-dimensional wave vector (π,0.67π)(\pi, 0.67\pi) in the Brillouin zone of the iron square lattice, consistent with the nesting vector between electron Fermi sheets

    A comparison of two models to predict nitrogen dynamics in organic agricultural systems

    Get PDF
    Two publicly available crop/soil models were compared. These were the EU-Rotate_N model (www.warwick.ac.uk/go/eurotaten) and the NDICEA model (www.ndicea.nl). Each simulation was also compared to measured data from an organically managed site in the English Midlands. Results showed that, overall, EU-Rotate_N gave a better estimation of soil mineral nitrogen, particularly after the incorporation of a long-term fertility-building crop. This model has a lot of flexibility but is aimed at researchers and requires more work before it is ready to be used by farmers or advisors. The NDICEA model is much simpler to use with a user-friendly interface

    Exact Performance of Concatenated Quantum Codes

    Get PDF
    When a logical qubit is protected using a quantum error-correcting code, the net effect of coding, decoherence (a physical channel acting on qubits in the codeword) and recovery can be represented exactly by an effective channel acting directly on the logical qubit. In this paper we describe a procedure for deriving the map between physical and effective channels that results from a given coding and recovery procedure. We show that the map for a concatenation of codes is given by the composition of the maps for the constituent codes. This perspective leads to an efficient means for calculating the exact performance of quantum codes with arbitrary levels of concatenation. We present explicit results for single-bit Pauli channels. For certain codes under the symmetric depolarizing channel, we use the coding maps to compute exact threshold error probabilities for achievability of perfect fidelity in the infinite concatenation limit.Comment: An expanded presentation of the analytic methods and results from quant-ph/0111003; 13 pages, 6 figure

    Airborne Observations of a Catalina Eddy

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00029.1Summertime low-level winds over the ocean adjacent to the California coast are typically from the north, roughly parallel to the coastline. Past Point Conception the flow often turns eastward, thereby generating cyclonic vorticity in the California Bight. Clouds are frequently present when the cyclonic motion is well developed and at such times the circulation is referred to as a Catalina eddy. Onshore flow south of the California Bight associated with the eddy circulation can result in a thickening of the low-level marine stratus adjacent to the coast. During nighttime hours the marine stratus typically expands over a larger area and moves northward along the coast with the cyclonic circulation. A Catalina eddy was captured during the Precision Atmospheric Marine Boundary Layer Experiment in June of 2012. Measurements were made of the cloud structure in the marine layer and the horizontal pressure field associated with the cyclonic circulation using the University of Wyoming King Air research aircraft. Airborne measurements show that the coastal mountains to the south of Los Angeles block the flow, resulting in enhanced marine stratus heights and a local pressure maximum near the coast. The horizontal pressure field also supports a south–north movement of marine stratus. Little evidence of leeside troughing south of Santa Barbara, California, was observed for this case, implying that the horizontal pressure field is forced primarily through topographic blocking by the coastal terrain south of Los Angeles, California, and the ambient large-scale circulation associated with the mean flow

    Airborne Measurements of Coastal Jet Transition around Point Conception, California

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00030.1Low-level winds along the Californian coast during spring and early summer are typically strong and contained within the cool, well-mixed marine boundary layer (MBL). A temperature inversion separates the MBL from the warmer free troposphere. This setup is often represented by a two-layer shallow-water system with a lateral boundary. Near a prominent point such as Point Conception, California, the fast-moving MBL flow is supercritical and can exhibit distinct features including a compression bulge and an expansion fan. Measurements from the University of Wyoming King Air research aircraft on 19 May 2012 during the Precision Atmospheric MBL Experiment (PreAMBLE) captured wind in excess of 14 m s−1 off of Point Conception under clear skies and wind ~2 m s−1 east of San Miguel in the California Bight. A compression bulge was identified upwind of Point Conception. When the flow rounds the point, the MBL undergoes a near collapse and there is a spike in MBL height embedded in the general decrease of MBL height with greater turbulence just downwind that is associated with greater mixing through the inversion layer. Lidar and in situ measurements reveal that transport of continental aerosol is present near the pronounced MBL height change and that there is a complex vertical structure within the Santa Barbara Channel. Horizontal pressure gradients are obtained by measuring the slope of an isobaric surface. Observations of wind and pressure perturbations are able to be linked through a simple Bernoulli relationship. Variation of MBL depth explains most, but not all of the variation of the isobaric surface

    Aircraft Measurements and Numerical Simulations of an Expansion Fan off the California Coast

    Get PDF
    Mountains along the California coastline play a critical role in the dynamics of marine atmospheric boundary layer (MBL) airflow in the vicinity of the shoreline. Large changes in the MBL topology have been known to occur downwind of points and capes along the western coast of the United States. Large spatial gradients in wind and temperature become established that can cause anomalous electromagnetic wave propagation. Detailed airborne measurements using the University of Wyoming King Air were conducted to study the adjustment of the MBL to the Point Arguello and Point Conception headlands. Pronounced thinning of the MBL consistent with an expansion fan occurred to the south of Point Conception on 13 June 2012. A sharp cloud edge was collocated with the near collapse of the MBL. D-value cross sections derived from differential GPS altitude measurements allow assessment of the vertical profile of the horizontal pressure gradient force and hence thermal wind forcing in response to the near collapse of the MBL. The Weather Research and Forecasting Model was run with a 1-km grid spacing to examine the atmospheric adjustment around Point Conception during this period. Results from the simulations including the vertical cross sections of the horizontal pressure gradient force were consistent with the aircraft observations. Model results suggest that divergence occurs as the flow rounds Point Conception, characteristic of an expansion fan. Wind speeds in the MBL increase coincident with the decrease in MBL thickness, and subsiding flow associated with the near collapse of the MBL is responsible for the sharp cloud edge
    corecore