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Exact performance of concatenated quantum codes
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When a logical qubit is protected using a quantum error-correcting code, the net effect of coding, decoher-
ence~a physical channel acting on qubits in the codeword! and recovery can be represented exactly by an
effective channel acting directly on the logical qubit. In this paper we describe a procedure for deriving the
map between physical and effective channels that results from a given coding and recovery procedure. We
show that the map for a concatenation of codes is given by the composition of the maps for the constituent
codes. This perspective leads us to an efficient means for calculating the exact performance of quantum codes
with arbitrary levels of concatenation. We present explicit results for single-bit Pauli channels. For certain
codes under the symmetric depolarizing channel, we use the coding maps to compute exact threshold error
probabilities for achievability of perfect fidelity in the infinite concatenation limit.
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I. INTRODUCTION

The methods of quantum error correction@1–3# have, in
principle, provided a means for suppressing destructive
coherence in quantum computer memories and quan
communication channels. In practice, however, a finite-si
error-correcting code can only protect against a subse
possible errors; one expects that protected information
still degrade, albeit to a lesser degree. The problem of c
acterizing a quantum code’s performance could thus
phrased as follows: what are the effective noise dynamic
the encoded information that result from the physical no
dynamics in the computing or communication device?

One could address this question by direct simulation
the quantum dynamics and coding procedure. However,
codes of nontrivial size, this approach rapidly becomes
tractable. For example, in studies of fault tolerance@4# one
often considers families of concatenated codes@3,5#. An
N-qubit code concatenated with itselfl times yields an
Nl -qubit code, providing better error resistance with incre
ing l . For even modest values ofN andl , simulation of the

resulting 2(N
l )-dimensional Hilbert space requires mass

computational resources; using simulation to find
asymptotic performance asl →` ~as required for fault-
tolerant applications! is simply not on option.

Instead, a quantum code is often characterized by the
of discrete errors that it can perfectly correct@6#. For ex-
ample, the Shor nine-bit code@1# was designed to perfectl
correct arbitrary decoherence acting on a single bit in
nine-bit register. Typical analyses of such codes implic
assume that the physical dynamics can be described
single-bit errors occurring at some probabilistic rate; if th
rate is small@e.g.,O(p) for p!1], the probability that these
errors will accumulate into a multibit uncorrectable error
also small@e.g.,O(p2)]. This type of leading-order analysi
is limited to a weak-noise regime, and to error mod
strongly resembling the errors against which the code p
tects. Outside this regime, these approximation methods
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to accurately describe the evolution of the encoded inform
tion.

In this work we take a different approach to characteriz
error-correcting codes, which leads to a simple, exact an
sis for arbitrary error models. As suggested above, a c
transforms the physical dynamics of the device into the
fective dynamics of the encoded information. In Sec. II w
derive this transformation for arbitrary noise, and presen
compact method for its calculation.

In the case of identical, uncorrelated noise on individu
qubits, this notion becomes particularly natural: encodin
logical qubit in several physical qubits yields an evoluti
less noisy than if the logical qubit had been stored, un
coded, in a single physical qubit. Thus a code acts as a
on the space of qubit dynamics, mapping the dynamics o
singlephysicalqubit to the dynamics of the encodedlogical
qubit. In Sec. III we show how to calculate this map, and
Sec. IV we use these maps to dramatically simplify the c
culation of effective dynamics for concatenated codes w
the physical dynamics do not couple code blocks.

In Sec. V, we restrict our attention to uncorrelated sing
bit Pauli errors, and in Sec. VI we calculate the exact perf
mance of several codes of interest under these error mo
Finally, in Sec. VII we use the coding maps to calculate
performance of certain concatenated codes, and find the
act threshold error probability for perfect fidelity in the infi
nite concatenation limit. These thresholds serve as impor
figures of merit for concatenation schemes, and for the co
considered here we find that the traditional approxim
methods underestimate these thresholds by up to 44%.
tion VIII concludes, suggesting potential future applicatio
for these techniques.

II. DESCRIBING CODE PERFORMANCE WITH
EFFECTIVE CHANNELS

In this section we first describe error-correcting codes
ing a language that will facilitate the subsequent devel
ment. We will then present our method for exactly describ
the effective dynamics of the encoded information. Thou
for clarity we restrict our discussion to codes storing a sin
qubit ~sometimes calledk51 codes! all the presented meth
©2002 The American Physical Society04-1
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ods generalize naturally to codes storing quantum inform
tion of arbitrary dimension.

As an important preliminary, it can be argued@3,7# that all
physically possible transformations taking quantum stater
on a Hilbert spaceH to statesr8 on a Hilbert spaceH8 may
be written in the following form:

r→r85(
j

AjrAj
† with (

j
Aj

†Aj51, ~1!

where theAj are linear operators fromH to H8 and 1 de-
notes the identity operator onH. Such transformations ar
called quantum operationsor channels, and are necessaril
linear, trace preserving, and completely positive. It is eas
see that the composition of quantum operations is als
quantum operation.~One also sees definitions requiring on
( jAj

†Aj<1, corresponding to the weaker requirement tha
quantum operation be trace nonincreasing rather than t
preserving. However, the requirement of trace preservatio
better suited to our purposes here. See Ref.@3# for a discus-
sion of the distinction.!

A. The error-correction process

The error-correction process, consisting of encodi
noise, and decoding, is depicted in Fig. 1; we consider e
stage in turn. AnN-qubit codeC uses a register ofN qubits
to encode a single logical qubitau0&1bu1& by preparing the
register in the stateau0̄&1bu1̄&, whereu0̄& and u1̄& are or-
thogonal states in the 2N-dimensional Hilbert space of th
register. The codespace~i.e., the space of initial registe
states! is spanned by these two states. In what follows it w
be convenient to describe states by density matrices: le
logical qubit be given byr0 and the initial register state b
r(0). Writing B5u0̄&^0u1u1̄&^1u, the encoding operation
E:r0→r(0) is given by

r~0!5E@r0#5Br0B†. ~2!

As B†B5u0&^0u1u1&^1u51, E is a quantum operation.
After the encoding, the register state evolves due to so

noise dynamics. In the setting of a quantum compu
memory, the dynamics are continuous in time; assuming e
lution for a timet, we haver(t)5Nt@r(0)# with Nt a quan-
tum operation depending continuously ont. ~For master
equation evolutionṙ5L@r#, we haveNt5eLt.! We will of-
ten omit the subscriptt and simply writeN. In the setting of
a quantum communication channel, the noise process is
ally given by the discrete application of a quantum operat

FIG. 1. The error-correction process: a logical single-qubit s
r0 is encoded in anN-qubit register asr(0). A noise process trans
forms the register to stater(t), which is then decoded to yield th
logical single-qubit stater f .
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N; thus if the transmitted state isr(0), thereceived state is
N@r(0)#, which we write asr(t) for consistency.

After the noise process, an attempt is made to recover
initial register stater(0) from the current register stater(t)
by applying a quantum operationR, which may be written
as

R@r~ t !#5(
j

Ajr~ t !Aj
† with (

j
Aj

†Aj51. ~3!

As the initial stater(0) is known to be in the codespace, it
clearly more beneficial to return the stater(t) to the code-
space than to do otherwise: lacking any other informati
one could at least prepare the completely mixed state in

codespace12 (u0̄&^0̄u1u1̄&^1̄u), yielding an average fidelity of
1
2 , rather than leaving the register outside the codesp
yielding a fidelity of 0. We will therefore restrict our atten
tion to error-correction processesR that take all register
states back to the codespace.~That is, we assume no leakag
errors during recovery.!

With the above assumption, the postrecovery st
R@r(t)# has support entirely on the codespace; thus it can
described by its restriction to the codespace, the log
single-qubit stater f such that E@r f #5R@r(t)#. Call D
5E †+R the decoding operation~shown to be a quantum
operation in Lemma 1 of Appendix B!:

D@r~ t !#5B†R@r~ t !#B5(
j

B†Ajr~ t !Aj
†B. ~4!

With this definition,r f5D@r(t)#. We will consider the logi-
cal stater f as the outcome of the error-correction proce
and therefore may say that the code is given by its encod
and decoding operations, i.e.,C5(E,D).

To build intuition for the decoding operationD, we note
that for most codes considered in the literature~and all of the
specific codes considered later in this paper! the recovery
procedure is given in a particular form. First, a syndrom
measurement is made, projecting the register state onto
of 2N21 orthogonal two-dimensional subspaces; let the m
surement be specified by projectors$Pj%. After the measure-
ment ~whose outcome is given byj, the index of the corre-
sponding projector!, the recovery operatorRj acts on the
register, unitarily mapping the subspace projected byPj back
to the codespace. For such codes, the recovery superope
is given by Eq.~3! with Aj5Rj Pj , andR@r(t)# is the ex-
pected state that results from averaging over syndrome m
surement outcomes.

For codes of this form, let$u0 j&,u1 j&% denote the ortho-
normal basis for the syndrome space projected byPj such
that Rj u0 j&5u0̄& andRj u1 j&5u1̄&. ThenRj Pj5u0̄&^0 j u1u1̄&
3^1 j u, and using the expression forD given in Eq.~4! yields

e

4-2
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EXACT PERFORMANCE OF CONCATENATED QUANTUM CODES PHYSICAL REVIEW A66, 032304 ~2002!
D@r~ t !#5(
j

B†Rj Pjr~ t !Pj
†Rj

†B

5(
j

~ u0&^0 j u1u1&^1 j u!r~ t !~ u0 j&^0u1u1 j&^1u!.

~5!

Thusr f5D@r(t)# is the sum of the single-qubit density m
trices that result from restrictingr(t) to each of the syn-
drome spaces, with basis$u0 j&,u1 j&% determined by the re
covery operator.

As an example, consider the bit-flip code@3#, a three-
qubit code that protects against single bit-flip errors. T
bit-flip code’s encoding transformation is given by

u0&°u0̄&5u000&, u1&°u1̄&5u111&. ~6!

After the action of some error dynamics, the syndrome m
surement then projects the register state into one of four
spaces: the codespace itself, and the three subspace
result from flipping the first, second, or third bit of states
the codespace. The corresponding recovery operator sim
flips the appropriate bit back, attempting to reverse the er
Thus the basis specifying the decoding operation is given

u00&5u000&, u10&5u111&,

u01&5u100&, u11&5u011&,

u02&5u010&, u12&5u101&,

u03&5u001&, u13&5u110&. ~7!

We will use the bit-flip code as an example throughout t
work.

B. Calculating the effective dynamics

The transformationr0→r f gives the effective dynamic
of the encoded information resulting from the physical d
namicsN. Let G be the map giving these effective dynamic
r f5G@r0#. From the above discussion, the effective dyna
ics are simply the result of encoding, followed by nois
followed by decoding, i.e.,

G5D+N+E. ~8!

As G is the composition of quantum operationsE, N, andD,
it is itself a quantum operation. We may therefore callG the
effective channeldescribing the codeC5(E,D) and physical
noise dynamicsN.

Because the effective channelG is only a map on single
qubit states, it should have a compact description—in p
ticular, a description much more compact than some arbit
noiseN acting onN-qubit states. By calculating such a com
pact description, we may easily find the effective evoluti
of an arbitrary initial stater0 without explicitly considering
the physical noise dynamics. As we now show,G may be
03230
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written as a 434 matrix with a simple interpretation.~See
Ref. @8# for a full discussion of qubit channels represented
this fashion.!

For each Pauli matrixsP$I ,X,Y,Z%, let ^s&05tr(sr0).
The Pauli matrices form a basis for qubit density matric
and so the initial logical qubitr0 may be linearly param-
etrized by its expectation values^s&0 as follows:

r05
1

2
^I &0I 1

1

2
^X&0X1

1

2
^Y&0Y1

1

2
^Z&0Z. ~9!

~As the trace of a density matrix must be 1 we will alwa
have^I &51, but it will be convenient to include this term!
Similarly, the final logical qubitr f may be linearly param-
etrized by its expectation valueŝs& f5tr(sr f). Thus the
effective channelG may be written as the mapping from th
expectation valueŝs&0 of r0 to the expectation values^s& f

of r f . Writing rW 05(^I &0 ,^X&0 ,^Y&0 ,^Z&0)T and rW f
5(^I & f ,^X& f ,^Y& f ,^Z& f)

T, the linearity ofG allows it to be
written as the 434 matrix such thatrW f5GrW 0. The fidelity of
a pure logical qubitr0 through the effective channel is the
given by tr(r0r f)5 1

2 rW 0
TrW f5

1
2 rW 0

TGrW 0. Thus to fully character-
ize the effective channelG we need only find the entries o
its 434 matrix representation.~More generally, if the code
stored ad-dimensional state rather than the two-dimensio
state of a qubit, the logical density matricesr0 andr f would
be expanded in the basis of the identity matrix and thed2

21 generators of SU(d), andG would be represented as
d23d2 matrix.!

To find these matrix elements, we consider the encod
and decoding processes in more detail. LettingEs denote
1
2 E@s#, the encoding transformationE acts onr0 @given by
Eq. ~9!# to prepare the initial register state

r~0!5^I &0EI1^X&0EX1^Y&0EY1^Z&0EZ . ~10!

Thus the encoding operationE is completely characterized
by the Es operators, which are easily constructed from t
codewords:

EI5
1

2
~ u0̄&^0̄u1u1̄&^1̄u!,

EX5
1

2
~ u0̄&^1̄u1u1̄&^0̄u!,

EY5
1

2
~2 i u0̄&^1̄u1 i u1̄&^0̄u!,

EZ5
1

2
~ u0̄&^0̄u2u1̄&^1̄u!. ~11!

As expected,r(0) is the stater0 on the codespace, an
vanishes elsewhere.

Now consider the decoding process, which yields
logical stater f . We may express the expectation values^s& f
in terms ofr(t), the register state prior to recovery, as fo
lows:
4-3
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^s& f5tr~sr f !5tr$sD@r~ t !#%5trS (
j

sB†Ajr~ t !Aj
†BD .

~12!

Exploiting the cyclic property of the trace and noting th
BsB†5E@s#52Es , we have

^s& f5tr~Dsr~ t !! where Ds52(
j

Aj
†EsAj . ~13!

Thus the decoding operationD is completely characterize
by theDs operators.

Substitutingr(t)5N@r(0)# into Eq. ~13!, we have^s& f
5tr$DsN@r(0)#%. Substituting in the expression forr(0)
given by Eq.~10! then yields

^s& f5trS DsNF(
s8

^s8&0Es8G D . ~14!

Letting the matrix elements ofG be given by

Gss85tr~DsN@Es8# ! ~15!

for s,s8P$I ,X,Y,Z%, we have^s& f5(s8Gss8^s8&0, i.e.,
rW f5GrW 0.

To completely characterize the effective channelG, then,
we need to only compute these matrix elements. In fact, tr
preservation~i.e., ^I & f5^I &0) requiresGII 51 andGIX5GIY
5GIZ50. Thus the effect on the logical information of th
potentially complex dynamics of theN-qubit register space
are characterized by the remaining twelve matrix element
G. If N is time dependent, then the only observable effect
this time-dependence will appear in the time dependenc
the Gss8 , andGt gives the effective channel for correctio
performed at timet. Note that the dynamicsN need not be
related to those against which the code was designed to
tect.

We have thus shown that the effective dynamics may
calculated by evaluating Eq.~15!, which requires construct
ing the Es and Ds operators. TheEs operators are easily
understood to be the operators that act as1

2 s on the code-
space and vanish elsewhere; to build intuition for theDs

operators, consider codes whose recovery is specified
syndrome measurement projectors$Pj% and recovery opera
tors $Rj% as discussed in Sec. II A. For these codes, we h
Aj5Rj Pj , and soDs52( j Pj

†Rj
†EsRj Pj . This expression

may be simplified by noting thatEs maps the codespace t
itself and vanishes elsewhere, andRj unitarily maps the
space projected byPj to the codespace. ThusRj

†EsRj uni-
tarily maps the space projected byPj to itself and vanishes
elsewhere, i.e.,PjRj

†EsRj Pj5Rj
†EsRj . We therefore have

Ds52(
j

Rj
†EsRj . ~16!

Using the expressions forEs given in Eq. ~11! and Rj

5u0̄&^0 j u1u1̄&^1 j u, we have
03230
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j

~ u0 j&^0 j u1u1 j&^1 j u!,

DX5(
j

~ u0 j&^1 j u1u1 j&^0 j u!,

DY5(
j

~2 i u0 j&^1 j u1 i u1 j&^0 j u!,

DZ5(
j

~ u0 j&^0 j u2u1 j&^1 j u!. ~17!

Thus we see that in this caseDs is simply the sum of the
operatorss acting on each of the syndrome spaces, withZ
eigenstatesu0 j& and u1 j& determined by the recovery proce
dure. Note thatDI is the identity operator on the entire reg
ister space.

III. CODING AS A MAP ON CHANNELS

One often considers noise modelsN consisting of uncor-
related noise on each of theN physical qubits. This type of
model arises naturally in a communication setting, where
register qubits are sent over a noisy transmission line on
a time, and is also appropriate for various physical imp
mentations of a quantum computer.~By contrast, one can
also consider error models in which correlated noise do
nates@9#.! For such models, we may write

N5N (1)
^ N (1)

^ •••^ N (1)5N (1)^ N, ~18!

whereN (1) is a quantum operation on a single qubit.
The goal of encoding a qubit is to suppress decohere

multiple qubits are employed to yield an effective channelG,
which should be less noisy than the channel resulting fr
storing information in a single physical qubit, namely,N (1).
A code can thus be seen as a map on channels, takingN (1) to
G. More precisely, for anN-qubit codeC5(E,D), define the
correspondingcoding mapVC by

VC:N (1)→G5D+N (1)^ N+E. ~19!

We now derive an expression for the coding mapVC of
an arbitrary codeC5(E,D). In Sec. II B we described howG
may be specified by its matrix elementsGss8 , given by Eq.
~15!. SinceN (1) is a single-qubit quantum operation, it ma
also be written as a 434 matrix such that ifN (1) takesr to
r8, thenrW 85N (1)rW . We seek an expression for the matr
elements of the effective channelG in terms of the matrix
elements of the physical channelN (1).

Operators onN qubits may be written as sums of tens
products ofN Pauli matrices; we may therefore write theEs

andDs operators describingC5(E,D) as

Es85 (
m iP

$I ,X,Y,Z%

a$m i %
s8 ~ 1

2 m1! ^ •••^ ~ 1
2 mN!, ~20!
4-4
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Ds5 (
n iP

$I ,X,Y,Z%

b$n i %
s n1^ •••^ nN . ~21!

For example, for the bit-flip code described in Sec. II A
Eqs.~6! and~7!, we may calculate theEs8 andDs operators
using Eqs.~11! and~17!; expanding the results in the basis
Pauli operators yields

EI5
1

8
~ III 1IZZ1ZIZ1ZZI!,

EX5
1

8
~XXX2XYY2YXY2YYX!,

EY5
1

8
~2YYY1YXX1XYX1XXY!,

EZ5
1

8
~ZZZ1ZII 1IZI 1IIZ !, ~22!

and

DI5III ,

DX5XXX,

DY5
1

2
~YYY1YXX1XYX1XXY!,

DZ5
1

2
~2ZZZ1ZII 1IZI 1IIZ !. ~23!

To find the matrix elements of the effective channel,
substitute Eqs.~18!, ~20!, and ~21! into the expression for
these matrix elements given by Eq.~15!. Noting that

N@ 1
2 m1^ •••^

1
2 mN#5N (1)@ 1

2 m1# ^ . . . ^ N (1)@ 1
2 mN#, and

tr@(A^ B)(C^ D)#5tr(AC)tr(BD) yields

Gss85 (
$m i %,$n i %

S b$n i %
s a$m i %

s8 )
i 51

N

tr~n iN (1)@ 1
2 m i # !D . ~24!

From the orthogonality of Pauli matrices, the matrix1
2 m i ,

when written as a vector of expectation values, has a 1 in the
m i component and zeros elsewhere. Further, tr(n ir) is sim-

ply the n i component ofrW . Thus tr(n iN (1)@ 1
2 m i #)5N n im i

(1) ,

and we have

Gss85 (
$m i %,$n i %

S b$n i %
s a$m i %

s8 )
i 51

N

N n im i

(1) D . ~25!

Thus the matrix elements ofG can be expressed as pol
nomials of the matrix elements ofN (1), with the polynomial
coefficients depending only on theEs8 andDs of the code.
These polynomials specifyVC. By computing these polyno
mials for a codeC, one can easily calculate the effectiv
channel for the codeC due to any error model with identica
uncorrelated noise acting on each physical qubit.@If a differ-
03230
ent noise model acts on each physical qubit, i.e.,N5N (1)

^ •••^ N (N), simply replaceN n im i

(1) with N n im i

( i ) in Eq. ~25!.#

IV. CONCATENATED CODES

We now consider concatenated codes@3,5#. We first de-
scribe the procedure for constructing such codes, and
show how the coding mapsVC make the calculation of the
effective channels for such codes straightforward.

A. Constructing concatenated codes

We now describe how two codes may be concatenate
form a larger code; the procedure is depicted in Fig. 2.
the two codes be anM-qubit codeCout5(E out,D out), called
the outer code, and anN-qubit codeCin5(E in,D in), called
the inner code. A logical qubitr0 is encoded first using the
outer codeCout, yielding theM-qubit stateE out@r0#. Each of
these qubits is then encoded by the inner code; i.e., the
E in

^ •••^ E in5(E in) ^ M acts onE out@r0#. The composition
of these encodings forms the encoding map for the con
enated code:

Ẽ5~E in! ^ M+E out. ~26!

TheM sections of the register encoding each of theM qubits
in E out@r0# are called blocks; each block containsN qubits.
After the encoding, a noise processÑ acts on the entire
MN-qubit register.

A simple error-correction scheme~and one that seems rea
sonable for use in a scalable architecture! coherently corrects
each of the code blocks based on the inner code, and
corrects the entire register based on the outer code. Tha
the decoding map for the concatenated code is given by

D̃5D out+D in^ M. ~27!

We denote the concatenated code~with this correction
scheme! by Cout(Cin)5( Ẽ,D̃); note that Cout(Cin) is an
MN-qubit code.

FIG. 2. The error-correction process for the concatenated c

Cout(Cin)5( Ẽ,D̃); hereCout5(E out,D out) is a three-qubit code and

Cin5(E in,D in) is a five-qubit code. The noise processÑ acts on the
entire 15-qubit register.
4-5
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B. Effective channels for concatenated codes

Suppose that we have computed the effective channG
due to a codeCin5(E in,D in) with some noise dynamicsN,
and wish to consider the effective channelG̃ resulting from
the concatenated codeCout(Cin). We assume that eachN-bit
block in the register evolves according to the noise dynam
N and no cross-block correlations are introduced, i.e.,
the evolution operator on theMN-bit register is

Ñ5N^ N^ •••^ N5N ^ M. ~28!

By definition, we haveG̃ 5 D̃+Ñ+ Ẽ. Substituting Eqs.~26!,
~27!, and~28! into this expression yields

G̃5D out+D in^ M+N ^ M+E in^ M+E out

5D out+~D in+N+E in! ^ M+E out

5D out+G ^ M+E out, ~29!

where we have usedG5D in+N+E in. This result makes sense
each of theM blocks of N bits represents a single logica
qubit encoded inCin, and as the block has dynamicsN, this
logical qubit’s evolution will be described byG. Comparing
with the definition of the coding map~19!, we then have

G̃5VCout
~G!. ~30!

Thus given the effective channel for a codeCin and an error
model, the coding mapVCout

makes it straightforward to
compute the effective channel due to the concatenated
Cout(Cin).

Further, suppose that the original noise modelN had the
form of uncorrelated noise on single physical qubits,
given by Eq. ~18!. Then G5VCin

(N (1)), and so G̃
5VCout

„VCin
(N (1))…. We may therefore conclude that com

posing coding maps gives the coding map for the con
enated code, i.e.,

VCout(Cin)5VCout
+VCin

. ~31!

More generally, we may characterize both the finite a
asymptotic behavior of any concatenation scheme involv
the codes$Ck% by computing the mapsVCk. Then the finite
concatenation schemeC1„C2( . . . Cn . . . )… is characterized
by VC1(C2( . . . Cn . . . ))5VC1+VC2+•••+VCn. We expect the
typical VC to be sufficiently well behaved that standard d
namical systems methods@10# will yield the l →` limit of
(VC) l ; one need not compose the (VC) l explicitly. In Sec.
VII, we will consider such asymptotic limits in more deta

V. DIAGONAL CHANNELS

As an application of the methods presented above, we
consider the commonly-considered error model in wh
each physical register qubit is subjected to the symme
depolarizing channel@3#. These single-qubit noise dynamic
are given by the master equation
03230
s
at

de

s

t-

d
g

ill
h
ic

dr

dt
5

g

4
LX@r#1

g

4
LY@r#1

g

4
LZ@r#, ~32!

where for any linear qubit operatorc the Lindblad decoher-
ence operatorLc is given by

Lc@r#5crc†2
1

2
c†cr2

1

2
rc†c ~33!

andg is a measure of the noise strength. This master eq
tion is easily solved, yielding a qubit channel with matr
representation

N t
dep5S 1 0 0 0

0 e2gt 0 0

0 0 e2gt 0

0 0 0 e2gt

D . ~34!

Before calculating effective channels due to this error mod
it will be useful to discuss the more general set of chann
whose matrix representation is diagonal. As we will s
these channels correspond to single-bit Pauli channels,
will allow us to demonstrate the power of the techniqu
developed above.

Consider a qubit channel given by a diagonal mat
N (1). From trace preservationN II

(1)51, so let the channe
with N XX

(1)5x, N YY
(1)5y, andN ZZ

(1)5z be denoted@x,y,z# for
compactness.~Thus the depolarizing channel~34! is given by
@e2gt,e2gt,e2gt#.! In Ref. @11# it is shown that complete
positivity of such a channel requires

2x1y1z<1,

x2y1z<1,

x1y2z<1,

2x2y2z<1. ~35!

Now consider the single-bit Pauli channel in which t
transmitted state is subjected to the Pauli operatorsX, Y, and
Z with exclusive probabilitiespX , pY , andpZ , i.e.,

r→~12pX2pY2pZ!r1pXXrX1pYYrY1pZZrZ.
~36!

It is easy to show that this channel has the diagonal ma
representation

@122~pY1pZ!,122~pX1pZ!,122~pX1pY!#, ~37!

and so any Pauli channel is a diagonal channel. The conv
is also true: choosingpx5(11x2y2z)/4, py5(12x1y
2z)/4, andpz5(12x2y1z)/4 yields the channel@x,y,z#,
and the complete positivity constraints~35! yield the stan-
dard probability rulespX ,pY ,pZ>0 and pX1pY1pZ<1.
Thus any diagonal channel may be realized as a Pauli c
nel. Pauli channels are among the most commonly con
ered error models in the literature, and we will restrict o
attention to diagonal channels for the remainder of this wo
4-6
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The effect of a diagonal channel on a qubit is simple
interpret: we havê X& f5x^X&0 , ^Y& f5y^Y&0, and ^Z& f

5z^Z&0. Thus theX, Y, andZ components ofrW 0 decay in-
dependently, and we may therefore speak of the decoher
of ^X&, ^Y&, and ^Z&. Recalling from Sec. II B that the fi
delity of a pure stater through a qubit channelG is given by
1
2 rW TGrW , the respective fidelities ofX, Y, and Z eigenstates
through the channel are12 (11x), 1

2 (11y), and 1
2 (11z).

More generally, the fidelity of a pure state@requiring ^X&2

1^Y&21^Z&251] is given by 1
2 (11x^X&21y^Y&2

1z^Z&2). A common figure of merit for a channel is th
worst-case fidelity of a pure state, which for a diagonal ch
nel is 1

2 @11min(x,y,z)#. Thus if for a given error model a
codeC yields an effective channel@x,y,z# and a codeC8
yields an effective channel@x8,y8,z8#, we say thatC outper-
forms C8 if min(x,y,z).min(x8,y8,z8).

Many commonly considered codes arestabilizer codes
@3,12#, which are designed to detect and correct Pauli err
it would therefore not be so surprising if the coding maps
such codes were particularly well behaved when acting o
Pauli channel. In fact, as proved in Appendix A, ifC is a
stabilizer code andN (1) is diagonal, thenVC(N (1)) is also
diagonal. Thus just as arbitrary codes act as maps on
space of qubit channels, stabilizer codes act as maps on
space of diagonal qubit channels.

VI. EXACT PERFORMANCE FOR SEVERAL CODES
OF INTEREST

We will now present the effective channels for seve
codes of interest under diagonal error models. The co
considered here may all be formulated as stabilizer co
thus, as described in the preceding section, the effec
channels will also be diagonal. The diagonal elements of
effective channelG5VC(@x,y,z#) may be calculated eithe
using the coding map methods presented in Sec. III, or u
the stabilizer formalism as shown in Appendix A, which m
be computationally advantageous. For each code, we
compute the effective channel for a general diagonal e
model@x,y,z#, and then interpret the results for the symm
ric depolarizing channelN t

dep5@e2gt,e2gt,e2gt#.
The bit-flip code, first mentioned in Sec. II A, is a stab

lizer code; lettingVbf denote the corresponding coding ma
we find

Vbf~@x,y,z# !5@x3, 3
2 x2y2 1

2 y3, 3
2 z2 1

2 z3#. ~38!

As the bit-flip code is only a three-qubit code, it is not u
reasonable to check this result with more conventional m
ods, e.g., by counting bit-flip and phase-flip errors, or
working in the Heisenberg picture to compute the evolut
of the relevant expectation values. However, for larger co
such computations will rapidly become unmanageable.

To examine the bit-flip code acting under the symme
depolarizing channel, define @xbf(t),ybf(t),zbf(t)#
5Vbf(N t

dep); the functionsxbf, ybf, and zbf are plotted in
Fig. 3 along withe2gt ~describing the decoherence of th
physical qubits! for comparison. We see thatzbf(t).e2gt,
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and thus the decoherence of^Z& is suppressed by the bit-flip
code. However,xbf(t)5ybf(t),e2gt, and thus the decoher
ences of̂ X& and ^Y& are increased by the bit-flip code.

More generally, for any 0,x,z,1 we have3
2 z2 1

2 z3.z
and x3,x, so for any physical channel in this regime th
bit-flip code always suppresses decoherence of^Z& and in-
creases decoherence of^X&. Decoherence of̂ Y& is sup-
pressed whenx.A2/3 and 0,y,A3x222, and increased
for all other positive values ofx and y. We may therefore
conclude that under a general Pauli channel the bit-flip c
increases the fidelity of some transmitted states at the
pense of others, and thus the bit-flip code is outperformed
storing the logical qubit in a single physical bit.

However, as the bit-flip code is designed to only prote
against physical bit-flip~X! errors, it should not be expecte
to perform well in the presence of arbitrary Pauli errors.
we consider physical channels with onlyX errors, we find
that the bit-flip code suppresses decoherence of all enco
states. More precisely, suppose that the physical qubits
evolving via a Pauli channel~36! with only X errors, i.e.,
pY5pZ50. Then @x,y,z#5@1,122pX,122pX#, and
Vbf(@x,y,z#)5@1,12 3

2 pX
21 1

2 pX
3 ,12 3

2 pX
21 1

2 pX
3 #. Thus we

have reproduced the usual result of a leading-order analy
the bit-flip code suppresses decoherence due toX errors to
orderpX

2 .
Now consider the three-qubit phase-flip code@3#, with

encoding u6&°u666& for u6&51/A2(u0&1u1&). This
code is completely analogous to the bit-flip code, detect
and correcting single phase-flip~Z! errors instead of single
bit-flip ~X! errors. The phase-flip code’s coding mapVpf is
exactly the same as that of the bit-flip code, with the role
X andZ interchanged,

Vpf~@x,y,z# !5@ 3
2 x2 1

2 x3, 3
2 z2y2 1

2 y3,z3#. ~39!

The concatenation phase-flip~bit-flip! yields the Shor nine-bit

FIG. 3. The effective channel@xbf(t),ybf(t),zbf(t)# due to the
bit-flip code under the symmetric depolarizing channel. The resp
tive fidelities ofX, Y, andZ eigenstates for correction performed
time t are given by1

2 @11xbf(t)#, 1
2 @11ybf(t)#, and 1

2 @11zbf(t)#.
4-7
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code @1,3# with encoding u6&°1/A8(u000&6u111&) ^ 3.
ThusVShor5Vpf+Vbf. Evaluating this composition by usin
the coding maps~38! and ~39!,

VShor~@x,y,z# !5Vpf
„Vbf~@x,y,z# !…

5@P~x!,Q~x,y,z!,R~z!#, ~40!

where

P~x!5 3
2 x32 1

2 x9,

Q~x,y,z!5 3
2 ~ 3

2 z2 1
2 z3!2~ 3

2 x2y2 1
2 y3!2 1

2 ~ 3
2 x2y2 1

2 y3!3,

R~z!5~ 3
2 z2 1

2 z3!3. ~41!

~The combinatoric analysis required to reproduce this re
by counting bit-flip and phase-flip errors would be quite
dious.!

To examine the Shor code acting on the symmetric de
larizing channel, let @xShor(t),yShor(t),zShor(t)#
5VShor(N t

dep); the functionsxShor, yShor, andzShor are plot-
ted in Fig. 4. We see that for short times~or equivalently,
weak noise-strengthg), the Shor code suppresses decoh
ence of ^X&, ^Y&, and ^Z&. For long times, however, the
code increases the decoherence of all three expectation
ues, and aszShor(t).xShor(t).yShor(t), in an intermediate
regime the code suppresses the decoherence of some o
expectation values while increasing that of others. Thus
suppress the decoherence of an arbitrary logical state, co
tion needs to be performed at a timet whenyShor(t).e2gt.

Above we defined the phase-flip code by the encod
u6&°u666&; we could have also used the encoding giv
by u0&°u111&, u1&°u222&. Call the code with this
encoding phase-flip II, with coding mapVpfII . As this modi-
fication of the phase-flip code simply interchanges the
codedX andZ eigenstates, the new effective channel is si
ply that of the original phase-flip code with the effects

FIG. 4. The effective channel@xShor(t),yShor(t),zShor(t)# due to
the Shor code under the symmetric depolarizing channel.
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the channel on theX andZ components ofrW 0 interchanged:

VpfII(@x,y,z#)5@z3, 3
2 z2y2 1

2 y3, 3
2 x2 1

2 x3# @compare to Eq.
~39!#. We could then use this version of the phase-flip co
to define an alternative version of the Shor code with
encoding u0&°1/A8(u000&1u111&) ^ 3, u1&°1/A8(u000&
2u111&) ^ 3. Call this code Shor II, with corresponding cod
ing mapVShor II5VpfII+Vbf. We find

VShor II~@x,y,z# !5@R~z!,Q~x,y,z!,P~x!#, ~42!

with the polynomialsP, Q, andR defined by Eq.~41!. Com-
paring to Eq.~40!, we see that again this modification of th
Shor code simply interchanges the effect of the channel oX

andZ components ofrW 0. Assuming that the encoded logica
states are randomly distributed~as opposed to always send
ing Z eigenstates, for example!, the choice of using the Sho
code or the Shor II code is simply one of aesthetics:
effective channels are identical up to the interchange of
decoherence of̂X& and^Z&. However, as we will see in the
next section, this choice does have an impact when th
codes are concatenated.

For comparison, we consider two other stabilizer codes
interest. The Steane code@2,3# is a seven-bit code designe
to correct errors consisting either of a Pauli error (X, Y, or
Z) on a single qubit of the codeword, or of anX and aZ error
on separate qubits. We find

VSteane~@x,y,z# !5@S~x!,T~x,y,z!,S~z!# ~43!

with

S~x!5 7
4 x32 3

4 x7,

T~x,y,z!5 7
16 y31 9

16 y72 21
16 ~x41z4!y31 21

8 x2yz2. ~44!

Let @xSteane(t),ySteane(t),zSteane(t)#5VSteane(N t
dep); we find

that the functionsxSteane, ySteane, andzSteaneare qualitatively
similar to the analogous functions of the Shor code. If th
were plotted in Fig. 4, these functions would be intersper
between the plotted curves: for all values oft.0, we have
zShor.zSteane5xSteane.xShor.ySteane.yShor. Though the Shor
code more effectively suppresses decoherence for logicZ
eigenstates, the Steane code performs better in the worst
(Y eigenstates!, and thus outperforms the Shor code.

The five-bit code@3,13,14# corrects Pauli errors on a
single qubit of the codeword. We find

VFive~@x,y,z# !5@U~x,y,z!,U~y,z,x!,U~z,x,y!# ~45!

with

U~x,y,z!5 5
4 x~y21z2!2 5

4 xy2z22 1
4 x5. ~46!

Letting @xFive(t),yFive(t),zFive(t)#5VFive(N t
dep) yields xFive

5yFive5zFive, as expected from the symmetries of the co
and of the mapVFive. Thus the fidelity of a state through thi
channel is independent of the state. These functions
have behavior qualitatively similar to those plotted in Fig.
and for t.0 we havezShor.zFive.zSteane.xShor. Thus the
five-bit code outperforms both the Shor and Steane code
4-8
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VII. EXACT PERFORMANCE AND THRESHOLDS
FOR CERTAIN CONCATENATION SCHEMES

We now consider the effective channel due to families
concatenated codes under the symmetric depolarizing c
nel. First, consider the Shor code concatenated with itsel
times, denoted by Shor2l . From Sec. IV, we know that the
coding map for this code is given byV (Shor2l )

5VShor+•••+VShor5(VShor) l . As VShor takes diagonal chan
nels to diagonal channels, the effective channel due to S
2l is also diagonal. Let

@xl ~ t !,yl ~ t !,zl ~ t !#5~VShor! l ~N t
dep!, ~47!

which may be calculated using the polynomials ofVShor

given in Eq.~41!.
The functionszl (t) for 0<l <4 are plotted in Fig. 5. We

immediately observe that asl →` the functionszl (t) ap-
proach a step function. Denoting the step function’s time
discontinuity bytZ

! , we havezl (t)→u(tZ
!2t) where

u~x!5H 0 x,0

1 x.0.
~48!

For t,tZ
! , each layer of concatenation decreases the^Z&

decoherence, yielding perfect preservation of the enco
^Z& information in the infinite concatenation limit. Howeve
for t.tZ

! , the^Z& decoherence increases. Thus in the infin
concatenation limit, the code will perfectly protect^Z& of the
logical qubit if correction is performed prior totZ

! ; if correc-
tion is performed after this time, all^Z& information is lost.

Similarly, the functionsxl (t) and yl (t) approach step
function limits as l →`; call the discontinuous times o
these step functionstX

! and tY
! . To perfectly protect an arbi

trary state in the infinite concatenation limit, correction mu
be performed prior tot th5min(tX

! ,tY
! ,tZ

!). We call t th the stor-
age threshold. ~We use the term ‘‘storage threshold’’ to ind

FIG. 5. The functionszl , where@xl (t),yl (t),zl (t)# is the ef-
fective channel forl concatenations of the Shor code under t
symmetric depolarizing channel.
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cate that the threshold takes into account only noise in
register, rather than gate or measurement errors which
also considered in fault-tolerant settings.! We now show how
the coding mapVShor may be used to find this threshold.

Observe in Fig. 5 that all the plots ofzl (t) intersect at a
point (gtZ

! ,z!). Writing VShor in the form ~40!, we have
zl 11(t)5R(zl (t)). The functionR(z) is plotted in Fig. 6.
We see that the mapz°R(z) has fixed points at 0, 1, and
point z!'0.7297. @We find z! by numerically solvingz
5R(z) on the interval (0,1).# Iterating the map pushe
points in the interval (0,z!) toward 0, and pushes points i
the interval (z!,1) toward 1. In the language of dynamic
systems@10#, 0 and 1 are attracting fixed points, andz! is a
repelling fixed point. This behavior leads to the shape of

plots in Fig. 5. We then inverte2gtZ
!
5z! to find gtZ

!

50.3151. The functionP(x) has the same qualitative beha
ior on (0,1) asR(z), so we may similarly findx!'0.9003
andgtX

!'0.1050.
We cannot use the same method to findtY

! , asyl 11(t) is
a function ofxl (t), yl (t), and zl (t), not of yl (t) alone.
@This problem is evident from plots of the functionsyl (t):
though these functions approach a step function in thel
→` limit, they do not all intersect at a point as the plots
zl (t) do.# However, we now argue that findingtX

! and tZ
! is

sufficient to find tY
! . For t,tX

! , xl (t)→1 and zl (t)→1.
Using the complete positivity constraints~35!, we find that if
@x,y,z# is a channel,x5z51 impliesy51. Since the space
of channels@x,y,z# is closed and bounded~it consists of the
boundary and interior of a tetrahedron inR3), xl (t)→1 and
zl (t)→1 implies yl (t)→1. Now for tX

!,t,tZ
! , xl (t)

→0, and zl (t)→1. Using the complete positivity con
straints~35!, we find that if @x,y,z# is a channel,x50 and
z51 implies y50. Thus we may conclude that for thes
values oft, yl (t)→0. We now haveyl (t)→1 for t,tX

! ,
and yl (t)→0 for t.tX

! , thus we concludetY
!5tX

! . More

FIG. 6. The functionR(z) ~plotted as the thick curve!. Observe
that the mapz°R(z) has fixed points at 0, 1, andz!. The arrows
depict the iteration of this map pushing points in the interval (0,z!)
toward 0 and points in the interval (z!,1) toward 1.
4-9
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generally, if we know tX
! and tZ

! , then tY
! is given by

min(tX
! ,tZ

!). We may therefore conclude thatgtY
!'0.1050,

and sogt th'0.1050.~The value oftY
! could also be obtained

from the dynamics of the polynomial mapsP, Q, and R
without making reference to the complete positivity co
straint, but the method presented here requires less argu
tation.!

We may also phrase these thresholds in the languag
finitely probable errors. Consider the symmetric Pauli ch
nel given by Eq.~36! with pX5pY5pZ5p/3. This channel
subjects a qubit to a random Pauli error with probabilityp,
and is described byN Pauli(p)5@12 4

3 p,12 4
3 p,12 4

3 p#. Ob-
serve that the symmetric Pauli channel and the symme

depolarizing channel are related byN Pauli
„

3
4 (12e2gt)…

5N t
dep. Thus in the infinite concatenation limit with

N Pauli(p) acting on each register qubit, the^s& of the logical

qubit will be perfectly protected ifp,ps
!5 3

4 (12e2gts
!
).

Define the threshold probabilitypth5min$pX
! ,pY

! ,pZ
!%; for p

,pth , all encoded qubits are perfectly protected in the in
nite concatenation limit. Values forgts

! and pth appear in
Table I.

We now use similar methods to derive thresholds for
Shor II, Steane, and five-bit codes presented in the prece
section. First, consider the Shor II code. L
@xl8 (t),yl8 (t),zl8 (t)#5(VShor II) l (N t

dep). Theyl8 (t) approach
a step function asl →`, but xl8 (t) and zl8 (t) approach a
limit cycle of period 2: we find thatx2l8 and z2l 118 both
approachu(t1

!2t) for some value oft1
!, while x2l 118 andz2l8

approachu(t2
!2t) for some distinct value oft2

!. From the

form of VShor II8 given in Eq.~42!, we see thatxl 118 (t) is a
function of zl8 (t), andzl 118 (t) a function ofxl8 (t), so it is
not so surprising that the sequencez08 ,x18 ,z28 ,x38 , . . . con-
verges and the sequencex08 ,z18 ,x28 ,z38 , . . . converges. To
find the threshold, we simply consider the sequence of ch
nels@x2l8 ,y2l8 ,z2l8 #, generated by the map (VShor II)2. From
Eq. ~42! we see thatx2(l 11)8 5R„P(x2l8 )… and z2(l 11)8
5P„R(z2l8 )…. Thus to find the valuestX

! , tY
! , andtZ

! , we find
the fixed points of the mapsx°R„P(x)… and z°P„R(z)…,
and proceed as with the Shor code. As shown in Table I,
find that, compared to the Shor code, the Shor II code
greater values fortX

! andtY
! , and a lesser value fortZ

! . As the
thresholdt th is given by the minimum of these three value
the Shor II code outperforms the Shor code in the infin
concatenation limit.

The mapVSteane, given by Eq.~43!, has the same form a
the Shor code map~40!, and therefore we can use the sam
methods to find the Steane code thresholds. The mapVFive,

TABLE I. Code storage threshold results~see text for discus-
sion.!

Code Shor Shor II Steane Five-bi

s X,Y Z X,Y Z X,Y,Z X,Y,Z
gts

! 0.1050 0.3151 0.1618 0.2150 0.1383 0.202
pth 0.0748 0.1121 0.0969 0.1376
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given by Eq.~45!, has a different form. However, asN t
dep

has the symmetric form@x,x,x# and VFive preserves
this symmetry by taking @x,x,x# to
@U(x,x,x),U(x,x,x),U(x,x,x)#, we may find tX

!5tY
!5tZ

!

simply by finding the fixed point ofx°U(x,x,x). Results
are summarized in Table I. We find that the five-bit code h
the largest threshold, and therefore the best performanc
the infinite concatenation limit. It is interesting to note th
the Shor II code outperforms the Steane code in the infi
concatenation limit, even though the opposite is true for o
one layer of each code.

We conclude our discussion of the thresholds by comp
ing the exact values ofpth to those calculated with traditiona
leading-order techniques~e.g., in Ref.@3#!. First consider the
five-bit code. Under the symmetric Pauli channelN Pauli(p),
a physical qubit is unmodified with probability 12p. The
five-bit code perfectly protects its encoded information if
more than one of the five physical qubits are subjected
Pauli error. UnderN Pauli(p), the probability of no errors on
any physical qubit is (12p)5, and the probability of exactly
one error is 5p(12p)4. We then assume that all greate
weight errors are uncorrectable, and find that the probab
of a correctable error is (12p)515p(12p)451210p2

1O(p3). The threshold valuepth is the value ofp at which
the single physical qubit and the encoded information h
the same probability of error. Thus to estimate the thresh
we solve 1210p2512p, yielding pth5

1
10 . Thus the

leading-order calculation underestimates the actual thres
~0.1376! by 27%. ~The assumption that all errors of great
weight are uncorrectable assures that the approximation
derestimates, rather than overestimates, the threshold.! The
Steane code corrects all weight-one errors, and weight-
errors consisting of anX on one bit and aZ on another bit. A
similar calculation finds the probability of a correctable err
to be 12 49

3 p21O(p3), yielding pth'0.0612, a 37% under
estimate. The Shor code corrects all weight-one errors,
weight-two errors such that anyX andY operators occur in
different blocks, and anyY and Z errors occur in the same
block. The probability of a correctable error is found to
1216p21O(p3), yielding pth50.0625, a 16% underesti
mate. The analysis is exactly the same for the Shor II co
yet the Shor II code has a very different threshold; in t
case, the leading-order result underestimates the thresho
44%.

VIII. CONCLUSION

We have shown how a code’s performance for a giv
error model can be described by the effective channel for
encoded information. The methods presented for calcula
the effective channel have allowed us to find the perf
mance of several codes of interest under single-bit P
channels, and further have allowed us to find thresholds
scribing these codes’ asymptotic limits of concatenation
der the symmetric depolarizing channel. Though we chos
restrict our attention to diagonal channels, these methods
be applied to any uncorrelated error model~e.g., the
amplitude-damping channel@3#, which is nondiagonal!, and
will substantially simplify the exact analysis of code perfo
mance in these more general settings.
4-10
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We believe that this effective channel description of co
performance may be useful in other contexts as well.
example, this work could be extended to take accoun
encoding and decoding circuit errors, thereby providing
method for calculating exact fault-tolerant thresholds. Al
by providing a comprehensive method for describing the p
formance of a quantum code without reference to a partic
error model~e.g., bit-flip and phase-flip errors! perhaps these
methods will allow us to address open questions such as
optimal code for a given error model, and the quantum ch
nel capacity.
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APPENDIX A: STABILIZER CODES
AND DIAGONAL CHANNELS

In this appendix we consider the effective channelG
5VC(N (1)) when N (1) is diagonal andC is a stabilizer
code. We show thatG is also diagonal, and show how th
stabilizer formalism facilitates its calculation. The reader u
familiar with stabilizer codes is directed to Ref.@3# for an
introduction, and to Ref.@12# for a more complete discus
sion.

SinceN (1) is diagonal, the termsNn im i

(1) in the expression

for the effective channel~25! vanish for n i5” m i . Thus we
have

Gss85(
$m i %

S b$m i %
s a$m i %

s8 )
i 51

N

N m im i

(1) D , ~A1!

dramatically simplifying the calculation ofG. The coeffi-

cientsa$m i %
s8 andb$m i %

s are defined in terms of theEs8 andDs

operators in Eqs.~20! and ~21!; to calculate these operato
we now consider the codeC in more detail.

Let C be a stabilizer code given by stabilizerS5$Sk%,
6$I ,X,Y,Z% ^ N, storing one qubit in anN-qubit register. The
stabilizerS defines the codespace, and the logical opera
Ī ,X̄,Ȳ,Z̄,6$I ,X,Y,Z% ^ N determine the particular basis o
codewordsu0̄&, u1̄&. Recall that theEs8 operators act as12 s8
on the codespace and vanish elsewhere. It can be shown
PC5(1/uSu)(kSk acts as a projector onto the codespace,
by definition the logical operatorss̄8 act ass8 on the code-
space. Thus

Es85
1
2 PCs̄85

1

2uSu (
k

Sks̄8 ~A2!

will act as 1
2 s8 on the codespace and vanish elsewhere.

As an example, consider the bit-flip code introduced
Sec. II A. The bit-flip code may be specified as a stabili
code, with S5$III ,ZZI,IZZ,ZIZ%, Ī 5III , X̄5XXX, Ȳ
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52YYY, Z̄5ZZZ. The above expression reproduces the
pressions for theEs8 presented in Eq.~22!. Without the sta-
bilizer formalism, deriving Eq.~22! is an exercise in expand
ing projectors in a basis of Pauli operators; with this meth
the computation is very simple.

We now construct theDs operators for the stabilizer code
As in Sec. II A, let $Pj% be the projectors describing th
syndrome measurement. For a stabilizer code, the reco
operatorsRj are each chosen to be a Pauli operator taking
space projected byPj back to the codespace. Consider t
expression forDs given by Eq.~16!; substituting in the ex-
pression~A2! for Es , we have

Ds5
1

uSu (
k, j

Rj
†Sks̄Rj . ~A3!

Now becauseRj , Sk , and s̄ are all Pauli operators, the
either commute or anticommute. For two Pauli operatorsV
and W, let h(V,W)561 for VW56WV. Commuting the
Rj to the left in the above expression and noting thatRj

†Rj

51,

Ds5
1

uSu (
k, j

h~Sk ,Rj !h~Rj ,s̄ !Sks̄

5
1

uSu (
k

f ksSks̄ ~A4!

with f ks5( jh(Sk ,Rj )h(Rj ,s̄). Again, as an example, con
sider the stabilizer definition of the bit-flip code. The reco
ery operators areIII , XII , IXI , and IXI . Evaluating the
above expression forDs yields the previous result of Eq
~23!.

Using the expressions~A2! and ~A4! for the Es8 andDs

operators in the stabilizer formalism, we will now find th

coefficientsa$m i %
s8 andb$n i %

s as defined in Eqs.~20! and ~21!.

SinceSks̄ is a Pauli operator, the sums~A2! and ~A4! are
expansions of these operatorsEs8 andDs in the Pauli basis;
if we were to write down these sums explicitly for a give
stabilizer code, the coefficientsa and b could be read off
immediately, e.g., from Eqs.~22! and ~23!.

This approach may be formalized as follows. First, no
that Sk and s̄ are both Hermitian Pauli operators, and th
commute; therefore their product is also a Hermitian Pa
operator, i.e.,Sks̄P6$I ,X,Y,Z% ^ N. For any operatorV5
6m1^ •••^ mN with m iP$I ,X,Y,Z%, let f(V)5m1^ •••

^ mN , and let a(V)P$0,1% such thatV5(21)a(V)f(V).
Then, usinguSu52N21, we may rewrite Eqs.~A2! and~A4!
as

Es85(
k

~21!a(Sks̄8)
1

2N
f~Sks̄8!, ~A5!

Ds5(
k

~21!a(Sks̄)
1

uSu
f ksf~Sks̄ !. ~A6!
4-11
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Comparing Eq.~A5! with the definition ofa$m i %
s8 in Eq.

~20!, we see that each term of the sum overk contributes to

a single coefficientaf(Sks̄8)
s8 , as (1/2N)f(Sks̄8) is of the

form ( 1
2 m1^ •••^

1
2 mN). Similarly, each term in Eq.~A6!

contributes to a single coefficientbf(Sks̄)
s . Lemma 2 of Ap-

pendix B shows thatf(Sks̄)5” f(Sk8s̄) unlessk5k8 and
s5s8. Thus each term in Eq.~A5! contributes to adistinct

coefficientaf(Sks̄8)
s8 , and each term in~A6! contributes to a

distinct coefficientbf(Sks̄)
s . We may therefore simply rea

off the coefficients from Eqs.~A5! and ~A6!, yielding

af(Sks̄8)
s8 5~21!a(Sks̄8), ~A7!

bf(Sks̄)
s

5~21!a(Sks̄)
1

uSu
f ks , ~A8!

and all othera$m i %
s8 andb$m i %

s vanishing.

We now evaluateG5VC(N (1)) whereN (1)5@x,y,z# us-
ing Eq.~A1!. The only nonvanishing termsb$m i %

s occur when

m1^ •••^ mN5f(Sks̄) for somek ands, and the only non-

vanishing terms a$m i %
s8 occur when m1^ . . . ^ mN

5f(Sks̄8) for some k and s8. Thus the coefficients

b$m i %
s a$m i %

s8 of Eq. ~A1! will vanish unlessm1^ •••^ mN

5f(Sks̄)5f(Sk8s̄8) for some k and k8. As proved in
Lemma 2 of Appendix B, this cannot happen whens5” s8.
Thus all the matrix elementsGss8 vanish whens5” s8, i.e.,
G is diagonal.

Having demonstrated that the coding mapVC of a stabi-
lizer codeC takes diagonal channels to diagonal chann
and becauseGII 51 from trace preservation, we need to on
computeGXX , GYY, and GZZ by using Eq.~A1! to find G
5VC(@x,y,z#). These computations can be performed us
the methods of Sec. III, but we conclude this section
expressing these elements by using the stabilizer formal
which may be computationally advantageous.

Consider the diagonal termsGss given by Eq.~A1!. We
need to only sum over the nonvanishing coefficientsa and
b, which are given by Eqs.~A7! and ~A8!. Substituting in
these expressions yields

Gss5(
k

S 1

uSu
f ks)

i 51

N

N f i (Sks̄)f i (Sks̄)
(1) D , ~A9!
-
://

ce

03230
s,

g
y
m,

wheref i(V) denotesm i for f(V)5m1^ •••^ mN . Now as
N (1)5@x,y,z#, the product of the matrix elements ofN (1) in
the previous expression is simply a product ofx’s, y’s, and
z’s; each factor appears as many times as~respectively! X, Y,
andZ appear inf(Sks̄). Lettingws(p) denote thes weight
of a Pauli operatorp, e.g.,wX(XYX)52, we have

Gss85dss8

1

uSu (
k

f ksxwX(Sks̄)ywY(Sks̄)zwZ(Sks̄).

~A10!

APPENDIX B

This appendix contains lemmas deferred from previo
sections.

Lemma 1.The decoding operationD given by Eq.~4! is a
quantum operation.

Proof. From Eq.~4! we have

D@r#5(
j

B†AjrAj
†B. ~B1!

To prove thatD is a quantum operation, we must show th

(
j

~Aj
†B!~B†Aj !51, ~B2!

where1 is the identity on the register space. As we assum
thatR maps all states into the codespace, we can choose
operatorsAj to only have range on the codespace. With su
a choice, Aj

†Aj5Aj
†(u0̄&^0̄u1u1̄&^1̄u)Aj5Aj

†BB†Aj . We
therefore have

(
j

~Aj
†B!~B†Aj !5(

j
Aj

†Aj . ~B3!

From Eq.~3! we have( jAj
†Aj51, and soD is a quantum

operation. j

Lemma 2.For a stabilizer code with stabilizer$Sk% and
logical operators$s̄%, and f defined in Appendix A,
f(Sks̄)Þf(Sk8s̄8) unlessk5k8 ands5s8.

Proof. Suppose we havef(Sks̄)5f(Sk8s̄8); then
Sks̄56Sk8s̄8. As the stabilizersSk andSk8 act trivially on
the codespace,Sks̄ and 6Sk8s̄8 act respectively ass and
6s8 on the codespace. Thus we must haves56s8, which
requiress5s8 and the6 sign be positive. We now have
Sks̄5Sk8s̄; right-multiplying by s̄ yieldsSk5Sk8 , and thus
k5k8. j
.
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