8 research outputs found

    Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Get PDF
    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3 to 10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB/cm at 3 MHz and from 6.84 to 26.63 dB/cm at 10 MHz. With solid glass sphere concentrations in the range of 0.025 to 0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4 ± 1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines

    Bionic bodies, posthuman violence and the disembodied criminal subject

    Get PDF
    This article examines how the so-called disembodied criminal subject is given structure and form through the law of homicide and assault. By analysing how the body is materialised through the criminal law’s enactment of death and injury, this article suggests that the biological positioning of these harms of violence as uncontroversial, natural, and universal conditions of being ‘human’ cannot fully appreciate what makes violence wrongful for us, as embodied entities. Absent a theory of the body, and a consideration of corporeality, the criminal law risks marginalising, or altogether eliding, experiences of violence that do not align with its paradigmatic vision of what bodies can and must do when suffering its effects. Here I consider how the bionic body disrupts the criminal law’s understanding of human violence by being a body that is both organic and inorganic, and capable of experiencing and performing violence in unexpected ways. I propose that a criminal law that is more receptive to the changing, technologically mediated conditions of human existence would be one that takes the corporeal dimensions of violence more seriously and, as an extension of this, adopts an embodied, embedded, and relational understanding of human vulnerability to violence

    Prevalence of Mismatch Repair-Deficient Colorectal Adenoma/Polyp in Early-Onset, Advanced Cases: a Cross-Sectional Study Based on Iranian Hereditary Colorectal Cancer Registry

    No full text
    Background: Lynch syndrome (LS) increases the risk of many types of cancer, mainly colorectal cancer (CRC). The purpose of this study was to assess the prevalence of mismatch repair (MMR) deficiency in patients under the age of 50 with advanced adenomatous polyps, aiming at an early diagnosis of LS. Methods: This retrospective, cross-sectional study included eligible patients with advanced adenomas diagnosed ≤ 50 years of age registered between April 2014 and February 2017 at three pathology centers in Mashhad. Pathological records were reviewed, and colon tissue specimens were analyzed by immunohistochemistry (IHC) staining to identify proteins which serve as markers for LS as they are related to loss of MMR gene (MLH1, MSH2, MSH6, and PMS2) expression. Results: Of 862 consecutive patients, a total of 50 adenomas (54% males, 46% females of mean age 41.24 ± 6.5) met the eligibility criteria. Of the adenomas examined, 20 (40%) had a tubulovillous component, 34 (68%) had high-grade dysplasia, and 30 (60%) had were larger than 10 mm protrusions. None of the patients had loss of MMR protein expression. Conclusion: No individual with MMR genetic disorder was identified by IHC screening of early-onset advanced colorectal adenomas. This strategy is therefore not an effective strategy for detecting MMR mutation carriers

    Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Get PDF
    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cmat 3 MHz and from 6.84 to 26.63 dB cmat 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.status: publishe

    Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Get PDF
    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.</p
    corecore