19,024 research outputs found

    Dielectric relaxation and Charge trapping characteristics study in Germanium based MOS devices with HfO2 /Dy2O3 gate stacks

    Full text link
    In the present work we investigate the dielectric relaxation effects and charge trapping characteristics of HfO2 /Dy2O3 gate stacks grown on Ge substrates. The MOS devices have been subjected to constant voltage stress (CVS) conditions at accumulation and show relaxation effects in the whole range of applied stress voltages. Applied voltage polarities as well as thickness dependence of the relaxation effects have been investigated. Charge trapping is negligible at low stress fields while at higher fields (>4MV/cm) it becomes significant. In addition, we give experimental evidence that in tandem with the dielectric relaxation effect another mechanism- the so-called Maxwell-Wagner instability- is present and affects the transient current during the application of a CVS pulse. This instability is also found to be field dependent thus resulting in a trapped charge which is negative at low stress fields but changes to positive at higher fields.Comment: 27pages, 10 figures, 3 tables, regular journal contribution (accepted in IEEE TED, Vol.50, issue 10

    Mass transfer at low reynolds number in liquid fluidized beds

    Get PDF
    Imperial Users onl
    • …
    corecore