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ABSTRACT 

• 
. Mass transfer rate data in a shallow liquid fluidized bed has been 

obtained in the range 1 < Res  < 25,' 8 < Reo  < 56. An ion exchange 

neutralization reaction was chosen as the most convenient physico- 

chemical system for this purpose. 	From the analysis of data, it is 

inferred that for Re 
s 
 /Re

o 
 < 1/6 fluidized beds tend to maintain an 

ordered, axial structure in which individual particles are arranged 

parallel to the main flow. 	This arrangement effectively shields a por- 

tion of the surface of the particles from the main flow with a resulting 

decrease in mass transfer. 	For Re 
s 
 /Re

o 
 > 1/6 this ordered structure 

is lost due to perturbations in the flow and the bed attains a random 

structure. 	In order to account for the physical properties of differ- 

ent solid-liquid systems, the terminal Reynolds number Re
o 

is intro-

duced as the characteristic property that allows precise representation 

of data in liquid fluidized beds. 	For Re 
s 
 /Re

o  > 1/6, the following 

correlation is obtained: 

(Re 	1/3 
Sh
m 

= 0.86 Re 	s  
o Re Sc 

0 

where q = 0.5 Re
o
0.3 
 

To gain a further understanding of fluidized bed mass transfer re-

sults, some single particle mass transfer studies were made using the 

same physico-chemical system. 	The single particle experiments were 

carried out by allowing particles to fall at their terminal settling 

velocity in a reacting solution. 	The amount of mass transfer was esti- 

mated by a spectro-chemical method of analysis. 	The results are cor- 

related by the equation: 



Sh = 0.75 Ref  Scli 3  

• Comparison of single particle and extrapolated fluidized bed re-

sults at a voidage of unity indicates that fluidized bed data is about 

11% higher than expected from a consideration of single particle study. 

This increase is thought to be due to some kind of "turbulence" and is 

possibly generated by the flow distributor of the bed. 

Ta estimate the mass transfer rate in any multiparticle bed, 

whether fixed, distended or fluidized a semi-theoretical correlation 

based on Carberry's boundary layer model (9) has been proposed and 

tested using the fluidized bed data. 	This generalised correlation is 

Ref  
Shm  = 0.86 

e
s  Sc1/ 3  

By a small perturbation of velocity and voidage, both of which may fluc-

tuate in a fluidized bed, it is found that the effects of these two 

parameters oppose each other and cancel out. This explains why both 

fixed and fluidized bed data may be represented by a single equation, 

although their physical characteristics are different. 

As an extension to the problem of forced convective diffusion, a 

case where the diffusion coefficient is not constant has been analysed. 

This case would arise in an ion exchange solid-liquid system. 	Due.to 

the complexity of the problem, only an approximate solution has been 

possible. 	The solution predicts the correct dependence of mass trans- 

fer coefficient on the flow rate, but its dependence on concentration is 

uncertain. 
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NOMENCLATURE 

The dimensions are given in terms of mass (M), length (L), time 

(t) and temperature (T). 	The numbers in parentheses after description 

refer to equations in which symbols are used. 

constant (2.2-1), dimensionless 

complex term (A.3-23), dimensionless 

cross sectional area, L2  

radius of a unit cell in the free surface model, L 

exponents (2.3-10), dimensionless 

B, B0,  B1, B2, B3, B4, Bm  = pre exponential coefficients in equation 

of the type (2.2-1) or (2.2-17), dimensionless 

thickness of concentration boundary layer, L 

total concentration, mols/L3  

C. 	= 	molar concentration of species 'i', mols/L3  

C.ill' l C.b  = 	concentration of species 'it  at points R and b 

respectively, mols/L3  

1 
C. 	(C. - 

C.lb1  
)/(C.

12 
 - C.

lb'  
) dimensionless 

i 	e 
C.lb' l C.

b  = 
	bulk inlet and exit concentration of species 'i' of the 

fluid stream in a fluidized bed, mols/L3  

concentration of species 'i' in the particle phase; 

cools/L3  

Dis 
binary diffusivity of the pair i-s, L2/t 

B. 	diffusivity of the pair i-j in a multicomponent 

mixture, L2/t 

coupled diffusion coefficient (4.1-3), L2/t 

Deff 	= 	effective diffusion coefficient (4.1-16), L2/t 

A = 

A = 

A = 

a = 

al a2  = 

De effective diffusivity in a multiparticle bed (2.32), L2/t 
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d 	 = 	particle diameter, L 

ratio of particle diameter in 11+  form to the mixed 

(H
+
, Na) form, dimensionless 

.pseudo voidage (2.3-14), dimensionless 

E1, E2, E3 	= 	constants (6.1-14), dimensionless 

F
T 	total drag on a sphere, ML/t2  

constant (2.3-10), dimensionless 

Gl, G2, G3, G4 	= constant (4.2-2) to (4.2-5), dimensionless 

body force per unit mass, L/t2  

bed height, L 

ji = 	diffusional mass flux with respect to mass average 

velocity, M/tL2  

31.c 	= 	diffusional molar flux with respect to molar average 

velocity, moles/tL2  

C 
	overall mass transfer coefficient for constant diffusi- 

vity system, L/t 

717, KV(e)  = 	overall and local mass transfer coefficient where 

diffusion coefficient is not constant, L/t 

volume flow rate, L3/t 

M. 	= 	molecular weight of species i, M/mole 

exponent of Re and Res, dimensionless 

Ni 	= 	molar flux with respect to stationary coordinates, 

noles/tL2  

exponent (6.1-10), dimensionless 

exponent of Sc, dimensionless 

fluid pressure, M/Lt2  

resin loading i.e. ratio of sodium present in the resin 

to the total capacity of the resin, dimensionless 

exponent (6.1-4), dimensionless 



U . 1 

v* 

v1 

V 

V 

W
Na 

w 
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R 
	

gas constant, ML2/t2T mole 

R 
	

radius of particle, L 

r 	radial distance in spherical coordinates, L 

S 	. total surface are of particles, L2  

T 
	

temperature, T 

t 
	

time, t 

is 
	

saturation time, t 

t
f 	time of fall, 

approach velocity, L/t 

U
s 	

superficial velocity, L/t 

interstitial velocity, L/t 

mass average velocity, L/t 

molar average velocity, L/t 

v/U, dimensionless 

time averaged fluctuating velocity, L/t 

volume of particles used in the fluidized bed, L3  

total amount of Na in a particle, moles 

2 - 3n+ 3n5  - 27-16 	(2.3-6), dimensionless 

VTi 	= 	mass fraction of species 'i', dimensionless 

xi 	= 	distance perpendicular to flow, L 

xi 	= 	mole fraction of species 	dimensionless 

YA= 	yc, equivalent fraction of A, dimensionless 

z. 	= 	axial coordinate in cylindrical coordinate, L 

zi 	= 	distance in the direction of flow, L 

valency of species 	dimensionless 

DA/DB  - 1, dimensionless 

intensity of turbulence, dimensionless 

angle between the direction of flow and the axis of a 

multiparticle bed, radians 

Z. 
1 



ratio of inert to active spheres, dimensionless 

ratio of average channelling` length to particle diameter, 

dimensionless 

voidage, dimensionless 

R/a, dimensionless 

6 
	

angle in spherical coordinates, radians 

viscosity, M/Lt 

V 
	

p/p, kinematic viscosity, L2/t 

P 
	

fluid density, M/L3  

Ps 
	density of the particle, M/L3  

.P• 
	mass concentration of species 'i', M/L3  

shear stress, M/t2L 

angle in spherical coordinates, radians 

stream function, dimension depends on coordinate system 

Dimensionless group's  

dUp 	
Reynolds number based on approach velocity 

(used in single particle study) 

Re
s 

- dU
s
p 	

Reynolds number based on superficial velocity 

(used in multiparticle study) 

dUs 
	
-e) ' 

p 

p(1 Re. - 	Reynolds number based on hydraulic diameter 

(used in multiparticle study) 

Sc pp 	T5/ Schmidt number 
AS 

Kid Kid 
Sh = • 	D  , overall Sherwood number in single particle study 

D 	, 
AS 

 

Kid 1d 
Sh - 
m 	D

AS 
' 	D ' 

overall Sherwood number in multiparticle study 



Ree  
dU.P 
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Shy Shm 
-effective overall Sherwood number in a multiparticle 

D
e 

bed 

Pe = Re.Sc , Peclet number in single particle study 

Pe
s 

= Re
s
.Sc, Peclet number in multiparticle study 

d3  p(ps-p)g 
Ga   , Galileo number 

112 

	

Sh 	- 2  Fs 	, Frossling number 
Re4/2Sc1/3  

Sh  , j factor in single particle study 
Re Sc1/ 3  

Sh 
im 	

m 	, j factor in multiparticle study 
Re Sc1/3  

	

= 41E9 	interstitial j factor 

ke vrn■no.1 so 41\c,..,5 Re yv, 	s 

tOiticye U. is tvie 	vIc.1 sel3/4V-.1 	°4  

-n51e, pa0d c.,1¢ 
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1. INTRODUCTION 

Fluidization is an established unit operation and the use of fluid-

ized beds as reactors for a wide range of chemical processes involving 

mass and/or heat transfer operations is well known. 	Industrially, gas- 

solid systems are mostly used and an extensive study of gas-solid fluid-

ization has appeared in the literature during the past two decades and 

interest in this particular field is still sustained today. 	Liquid- 

solid fluidization, on the other hand has not been as widely studied for 

mass and heat transfer operations,-although 'some of the early fundamental 

hydrodynamic studies were carried out using liquid-solid systems. 	The 

lack of interest in liquid fluidization is possibly because as yet there 

' are too few large-scale applications. 	Most solid-liquid operations have 

traditionally been carried out in batch or semi-continuous fixed bed type 

equipment and there is no reason for departing from well established 

fixed bed technology unless fluidized beds can be shown to offer real 

technological and economic advantages. 

With the development of new techniques in solid-liquid handling, it 

has recently been shown that a liquid-solid system can be designed for 

continuous operation and this has given a fresh impetus to the study of 

liquid fluidized beds. 	The incentive has come largely in ion exchange 

processes, adsorption and hydrometallurgy where a number of continuous 

plants now exist employing fluidized bed equipment. 	Examples are the 

Cloete-Streat contactor (71) and pulsed contactor (74) for ion exchange 

processes. 	The principle of operation of these contactors is a periodic 

reversal of flow, which in conjunction with a suitable plate design 

allows particles to be transferred from stage to stage counter current 

to the direction of liquid flow. 	The important advantages of such 

multistage liquid fluidized beds are the low resin inventory cost, uni-

formity in pi-oduct quality, low pressure drop across the bed 0,  0.02 to 
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0.03.m head of water compared with several metres for fixed beds) and 

that no separate back-wash of the bed is necessary. Also a liquid fluid-

ized bed can be designed to operate with suspended materials in the fluid 

stream. The Nuclear fuel processing and waste water and sewage treat- 

ment industries will find this feature particularly attractive. 	In 

Nuclear fuel processing, there is an urgent economic need to upgrade uran-

ium from very low grade ore. This can be achieved by passing an unfil-

tered leached uranium slurry through A fluidized bed of ion exchange 

particles suitable for uranium exchange. 	This technique is likely to 

save the considerable cost of clarification and filtration. 	Treatment 

of waste water and sewage containing suspended particles can also be 

carried out in equipment of this type. 	Weber et al. (86) found that 

reclaiming of waste water containing organic Contaminants present in 

very small concentration, can be advantageously carried out using a 

fluidized bed of active charcoal. A kinetic study indicated that the 

rate of uptake of organic material present in waste water was inversely 

proportional to the square of the particle diameter so that if was desir-

able to keep the particle size small and hence a fluidized bed was used 

-to avoid the high cost of pumping. 

Though fluidized beds offer certain advantages compared to fixed 

beds, the final choice of operation will depend on the economics. 	Due 

to a limitation in the maximum velocity that can be used in a fluidized 

bed, vessel diameter may be larger than a fixed bed for the same volu- 

metric throughput. 	On the other hand, the pressure drop in a fixed bed 

is generally higher than for fluidized beds, often requiring the use of 

pressure vessels. 

A quantitative knowledge of mass transfer rates is a crucial requi-

site for the overall economic evaluation and design of a fluidized bed 

reactor in addition to the other considerations mentioned above. 	With 
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this in mind, the present project was undertaken to obtain liquid phase 

mass transfer rates in liquid fluidized beds. 	It has been mentioned 

earlier that liquid fluidized beds will be restricted regarding the 

flow rate. Hence experiments were carried out in the lower range of 

the Reynolds number (1 < Res  < 25) which is expected to be the range 

of operation for many solid-liquid fluidized beds and where surprisingly 

little reliable data is available (see Fig. 6.1-17). 

Since one of the important solid-liquid contacting operations 

would involve ion exchange reactions, it was felt desirable, that some 

effort be made in understanding the mass transfer results that would be 

obtained using such systems. 	This was looked at theoretically by ob- 

taining an approximate solution of the forced convective diffusion equa-

tion around a single sphere where mass transfer due to diffusion occurred 

under an electro-chemical potential gradient. 	This problem in general 

is complicated due to the presence of the electric gradient in addition 

to the concentration gradient. 	The latter is normally present in most 

mass transfer studies. 
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2. LITERATURE REVIEW 

2.1. 	Introduction  

The rate of mass transfer between a particulate and continuous 

phase is the subject of much research and a steady effort to improve 

knowledge on the topic has been made during the past few decades. The 

systems studied include solids, liquid drops and gas'bubbles as the 

particulate phase and liquid or gas as the continuous phase. 	Convec- 

tive mass or heat transfer may occur by either free or forced convection. 

In general interaction between these two modes of transfer occurs, but 

for practical purposes, particularly at moderate flow rates, free con-

vection effects are small. Much of the theoretical work has been con-

fined to forced convective physical mass transfer studies between a 

single particle and a fluid rather than to multiparticle systems such 

as fixed or fluidized beds of solids because of the very complex nature 

of the latter systems. 	The complications arise as a result of the inter- 

actions due to the presence of other particles. 	Nevertheless, the 

single particle studies are a useful framework for developing an under- 

-standing of the more complicated multiparticle case. 	Experimental 

studies are more readily available both for single and multiparticle 

systems than are theoretical studies. 

Various theoretical models and mathematical techniques have been 

used to obtain solutions to the problem of forced convective mass trans-

fer. All the work surveyed here refers to binary mixtures, where the 

diffusing component is present in small amount so that the assumption of 

constant density, diffusivity and negligible effect of flux allowing un- 

coupling of the basic equations are valid. 	Also no chemical reaction 

is allowed. 	The equations that describe steady state forced convective 

diffusion are: 
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V . v = 0 

v . Vy = 	—1  Vp + P — V2  v 

v . VCA  = D
AS

V2CA 

with the appropriate boundary conditions. Here v is the velocity, 

p is the pressure, p and p the density and viscosity of the fluid, 

CA  is the concentration of the species 'A' and D
AS 

is the diffu-

sivity of the pair 'A' and 'S' where 'S' is the solvent. 

For ease of presentation, single and multiparticle systems will be 

reviewed separately. 	This survey will mostly deal with solid particles, 

but 'a few relevant liquid droplet studies will also be mentioned and in 

general no distinction will be made between mass and heat transfer study 

and the Nusselt and Sherwood number will be used interchangeably. 

2.2. 	Forced convective mass transfer from a single solid sphere  

Equations (2.1-1) to (2.1-3) which describe forced convective dif-

fusion, under the restrictions mentioned, are a set of non linear partial 

differential equations and in general contain three space coordinates. 

Before attempting to solve the diffusion equation, the equation of 

motion must be solved. 	For flow past spheres, the flow may be con- 

sidered two dimensional axisymmetric, thus reducing the space coordinate 

by one. 	However, it has not yet been possible to integrate the full 

equation of motion analytically even for a single sphere placed in an 

infinite flowing medium. 	As a result, approximations have been made to 

obtain analytic solutions for certain ranges of the Reynolds number. 

Consequently analytic solutions for the convective diffusion equation 

are at best only possible for the limiting cases.,  

a 
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Experimentally, however, a wide range of results have appeared in 

the literature. 	Based on theoretical and dimensional analysis, workers 

in this field have generally correlated experimental data by an expres-

sion of the form: 

Sh = A + BlRemScn 	(2.2-1) 

where Sh, Re and Sc are the dimensionless groups known as the 

Sherwood, Reynolds and the Schmidt numbers (see Notation) and A, B1, 

m and n are numbers that are usually taken as constants. Experiment-

ally it is difficult to eliminate free convection effects entirely, par- 

ticularly at low flow rates. 	Therefore, free convection effects are 

also taken into account when correlating data by the above equation. 

It is often thought that the contribution to total transfer due to pure 

molecular diffusion, free convection and forced convection are simply 

additive. When free convection effects may be neglected, the constant 

A is assumed to take a value of 2.0, i.e. the Sherwood number corres- 

ponding to the stagnant medium case. 	The constants of the above equa- 

tions are obtained from the analysis of experimental data and theoreti-

'cal considerations. 

Though the aim is to restrict the review to low particle Reynolds 

number (Re up to 100), very often work will be cited that covers a much 

higher range (Re about 103). 	This is because very few experimental 

studies are confined to a narrow range of the Reynolds number and also 

because there has been little experimental work at low Reynolds number 

below Re about 50. 	Also as mentioned earlier, analytic solutions are 

possible only for some limiting cases, these being either very low Rey- 

nolds number or boundary layer flow. 	When there is no flow equation 

(2.1-3) reduces to 

v2c
A 
 = 0 
	

(2.2-2) 
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Using the boundary conditions 

r = R, 	C
A 

= C
AR 	and 	r = b, 	C

A 
= C

AB 	(2.2-3) 

the solution for the Sherwood number is 

Sh 
2  

1 - R/b (2.2-4) 

ITC2R 
where. 	Sh = 	and 	is the mass transfer coefficient de- 

D
AS 

fined by the equation, 

dC
A 

(CAR 
- C

Ab
) = - D

AS dr 
r=R 

(2.2-5) 

   

Equation (2.2-5) is the expression for the diffusional mass transfer 

which in dilute solution is effectively the total rate of mass transfer. 

When b co, Sh 2 in equation (2.2-4), the well known result in an 

infinite medium. 	For any practical situation natural convection will 

be present and hence the above result applies for a sphere of infinitesi- 

mally small radius. 	As a consequence, experimental verification is 

difficult, but there is little to doubt this result. 

For very slow motion, inertial terms in equation (2.1-2) may be 

neglected. 	The equation then reduces to 

pp  = u v2 v 
	

(2.2-6) 

The solution to the above equation under the boundary conditions 

r = R, v = 0 	and 	r = co, v = U 	(2.2-7) 

is available in any standard text and is known as the Stokes' solution. 

The important result is 

( 
IP = - IIJ r2  sin20 	1 - 3R +2   R3 

2r 	 7 
r 

(2.2-8) 



2b 

where it is the undisturbed stream velocity or the approach velocity 

and IP is the stream function defined such that 

1 	any 
v
r 

r2sine ae  

and 	 (2.2-9) 

4 
Ve  = 	

1 
 

r sine 3r 

Here v'r  and v
0 
 are the velocity components in r and e directions 

in spherical coordinates. 

Stokes' solution is valid when Re + 0 and provides a good descrip-

tion of the flow field in the neighbourhood of a particle for Re < 1. 

Various workers have attempted to extend the Stokes' solution to a higher 

Reynolds number range by a perturbation method. Both regular and singu-

lar perturbation procedures have been considered. A perturbation method 

has also been used to obtain a solution to the diffusion equation and it 

seems proper to outline very briefly the general nature of this proce-

dure. 

The principle of the regular perturbation technique is to assume 

that the perturbed quantity is small so that the original equations can 

be simplified to a new set of approximate equations. 	The approximate 

equations are obtained by substituting an assumed solution in a power 

series form and then collecting terms of equal order of the perturbed 

quantity. 	In some cases straightforward perturbation may yield a satis- 

factory result but when the series do not converge at every point, one 

resorts to the singular perturbation technique. 	At low Reynolds number, 

stretched variables are applied into results obtained from the regular 

perturbation method. 	A good summary of this technique in low Reynolds 

number field is given by Taylor (76). 
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Consider the diffusion equation in dimensionless form which may be 

written as 

2 v1.VC1  = —V C 
A Pe A (2.2-10) 

where vl  -= v/U, CA= 
(CA - CAb)/(CAR CAb) and Pe = 2RU/DAS. 

For creeping flow, Re 4- 0 and from the Stokes' solution it can be seen 

alwtensionleS5 
that theAvelocity field is dependent on spatial coordinates alone. It, 

therefo're, follows that the Sherwood number which in fact is a dimension-

less concentration gradient at the surface of the particle is a function 

of the Peclet number alone. However the exact form of the function de- 

- pends on the Peclet number itself. An order of magnitude analysis shows 

that if the Peclet number is large then the concentration change occurs 

within a very small region close to the sphere. 	Under these conditions, 

diffusion in the angular direction 0, can be neglected and the whole 

analysis is considerably simplified. 	This is the usual thin boundary 

layer assumption for the concentration field.. The criterion for this 

approximation to be valid is given by the equation 

2 	R 3 TT  t) 	= 0(1) i.e. Pe >> 1 	(2.2-11) 

where b is the thickness of the concentration boundary layer. When 

the Peclet number is small, the diffusion layer becomes thick and diffusion 

in the angular direction must be taken into account. 	Thus depending on 

the Peclet.number we have two asymptotic solutions, one for Pe .4- = and 

the other for Pe 4- 0. 

For large Peclet number and low Reynolds number analytic solutions 

have been obtained by Levich (50) and Friedlander (18,19). 	Levich's (50) 

solution involves a change of coordinate from CA(r,O) to CA(,0) and 

then by a suitable transformation he reduced the partial differential equa- 

tion into an ordinary differential equation. 	Using the Stokes' stream 



function he obtained an expression for the overall Sherwood number as 

Sh = .997 Fe1/3 	(2.2-12) 

Friedlander (18) obtained a solution by an integral method. He 

assumed a concentration profile which satisfied as many boundary condi-

tions as possible and substituted the assumed profile in the integrated 

form of the original diffusion equation. With sufficient terms in his 

assumed profile and a Stokes' stream function he obtained essentially 

the same result as Levich (50). 	The weakness of this analysis is the 

arbitrary nature of the assumed concentration profile since different 

functions could satisfy the same boundary conditions and hence the 

uniqueness of the solution is not guaranteed. 	Levich (50) pointed out 

that the integral method may lead to a substantial error in the concen- 

tration distribution. 	However, the total rate of mass transfer may 

agree quite well, because very near the surface, the integral method 

would yield a reasonably accurate value of the concentration gradient. 

It may be pointed out that Friedlander (18) used the wrong sign in two 

of his equations, but fortunately the errors cancelled out. 

It is worth noting that the thin boundary layer approximation is 

not valid near the rear of the sphere where the diffusion layer grows 

sufficiently to invalidate the boundary layer analysis. 	Sih and 

Newman (70) by the singular perturbation method showed that six distinct 

regions of mass transfer exist around a. sphere and one of these regions 

is the thin boundary layer region. 	In order to obtain mass transfer 

rates from the entire sphere, it is necessary to form a composite solu- 

tion for the regions close to the sphere. 	However, for any practical 

purpose, the boundary layer solution is sufficiently good since the 

boundary layer region exists over most of the sphere surface. 

22 
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For low Peclet numbers, the boundary layer assumption is not valid 

and so the entire diffusion equation must be 'solved. 	Kronig and 

Bruijsten (45) obtained a solution for the low Peclet number case by the 

use of the regular perturbation method. 	The solution, however, was not 

completely Satisfactory. 	The concentration field vanished everywhere 

at infinity except in the direction of flow. 	Acrivos and Taylor (1) 

overcame the difficulty of satisfying the boundary condition at infinity 

by the use of the singular perturbation method. 	The authors obtained 

the following expression for the overall Sherwood number in the range 

0 < Pe < 1 as 

Sh = 2 + iPe + 1Pe2  in Pe + O(Pe2) 	(2,2-13) 

These authors (1) also obtained an expression for the Sherwood number 

for large Peclet number and for slightly higher Reynolds number using 

pertubation correction of the Stokes' solution obtained by Proudman 

and Pearson (76). 	The expression is 

Sh = .991 Pe1"3  (CD/CD di/3 
	

(2.2-14) 

where C
D 

and C
DS are drag coefficients at the Re considered and 

Re 0 respectjvely. 	From this equation, the authors (1) pointed out 

that the effect of increasing Re on Sh is considerably less sensi-

tive to an increase in the Reynolds number than the drag coefficient. 

Yuge (90) considered the same problem of forced convective transfer 

for creeping flow using a coordinate perturbation procedure, rather than 

parameter perturbation as used by the workers previously mentioned. He 

used the spherical angle as the perturbed quantity and expressed the 

dimensionless coordinate in'terms of a series of even power of 0 with 

the coefficients that are a function of the radial coordinate alone. The 

first approximation was obtained by neglecting the angular diffusion term 
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from the diffusion equation and the assumed series substituted in the 

diffusion equation. Equating coefficients of equal power in 0 an in-

finite set of ordinary differential equations were obtained and inte-

grated numerically for values of the Peclet number of 0.3, 1, 3 and 

10. 	Fortunately it turned out that the coefficients converged very 

rapidly and only the first three were required to obtain a solution. 

The term neglected in the first approximation could be corrected by a 

second approximation. 	He found that for the Peclet number less than 
4 

0.3 the average value of the Sherwood number was indistinguiIable from 

the value of the stagnant medium case. Though Yuge (90) obtained 

results for the small Peclet number range his method should be valid for 

the entire Peclet number range for he makes no assumption of the magni-

tude of the Peclet number. Although this type of expansion cannot be 

proven to be mathematically rigorous, the method seems logical since in 

the limiting case as Re 4  0, the concentration distribution will be that 

for a sphere in a stationary medium. 	Yuge's (90) result disagrees by 

about 15% at Pe = 1 with the Acrivos and Taylor (1) solution. 	The 

latter authors' perturbation procedure is quite rigorous but it cannot 

predict the value of the Peclet number where the solution will breakdown 

and possibly their solution becomes poorer for Pe > 0.3. 

Some experimental confirmations of the theory are available for the 

very low Reynolds number region. 	Rowe et al. (67) report experimental 

data obtained by Aksel'rud for benzoic acid spheres that were moved in a 

circle in a stagnant tank of oil for which the data could be correlated 

as 

Sh = 	1.1 Pe113 	(2.2-15) 

in the range 0 < Re < 2.5 and Sc ti 3 x 106. 	Calderbank and Korchinsk 

(8) also observed the rate of heat transfer at low Reynolds number for 

mercury drops falling in aqueous glycerol solution. 	Though experiments 
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were carried out using drops, these authors found that the drag coef-

ficients for mercury drops deviated from solid sphere behaviour at 

Re > 200 when drop oscillation started. 	Hence this study can be used 

to compare solid sphere results for Re < 200. 	The authors carried 

out experiments by feeding hot mercury drops, formed by means of nozzles 

to a vacuum jacketed constant temperature glass column through which 

the continuous phase was recirculated. 	The transfer coefficient was 

determined by a heat balance on the drop and the results plotted as 

Sh/Sc .3 vs Re on logarithmic coordinates. 	However, if one uses an 

exponent of 1/3 instead of 0.3 for the Schmidt number, the low 

Reynolds number result could be correlated using an equation of the type 

(2.2-12) with a coefficient of 1.05 to within ±15% for 0.5 < Re < 10. 

The Schmidt number for these runs was about 3 x 103. 	Thus it may be 

concluded that the high Peclet number low Reynolds number theoretical 

studies are in good agreement with experiments. Very few reliable low 

Peclet number experiments are known. 

At large Reynolds number the velocity components appearing in the 

diffusion equation will be a function of the Reynolds number and thus 

the Sherwood number will no longer be a unique function of the Peclet 

number. At sufficiently high Reynolds number, where the flow may be 

described by the laminar boundary layer theory, the velocity components 

vary as Re3/ 2  and the solution for the Sherwood number varies with 

Reg  instead of Re113. 	Various workers have tried to obtain solutions 

for the diffusion equation at high Reynolds number. 

Frossling (20) was one of the earliest to obtain a solution from a 

single sphere for laminar boundary layer flow. 	Frossling (20) in an 

identical manner to the series solution for two dimensional laminar flow, 

expressed the potential velocity, the contour of the body, the stream 

function and the concentration in a series form. 	Equating coefficients 
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of equal power of the independent variable along which expansion was 

made, a series of ordinary differential equations were obtained which 

he solved numerically. He found that the first few equations were 

sufficient to obtain a solution. 	Frossling (20) was unable to eliminate 

the Schmidt number from his equations, thus the coefficients were func- 

tions of the Schmidt number. 	For the particular case of Sc = 2.532 

which corresponds to the sublimation of naphthalene in air he obtained 

an expression for the local Sherwood number as follows: 

Sh(8) = 1.366 (1 - .183702  + 	) Re1t2 sc1/3 	(2.2-16) 

The above theory, however, does not predict the velocity profile in the 

wake•and hence overall transfer rates cannot be obtained by this method 

and the analysis is valid only upto the flow separation point. 

Lochiel and Calderbank (52) obtained a solution using a quartic 

velocity profile obtained from an integral solution of the momentum equa- 

tion. 	They obtained an expression for the overall Sherwood number simi- 

lar in form to equation (2.2-1) except for the constant A as follows: 

Sh = B Re1t2  Sc1/3 	(2.2-17) 

From the theoretical analysis, the authors found that upto the flow 

separation point which was at about 108°, the value of the coefficient 

B was 0.7. 	Since the flow in the wake was not amenable to analysis, 

the authors on the basis of experimental results assumed that the wake 

contributed about 20% in magnitude of the frontal transfer and suggested 

a value of B as 0.84 for the entire sphere. 	Garner and Kee (27) and 

Grafton (32) presented a method for the prediction of mass transfer in 

the wake region. 	Garner and Kee (27) obtained a solution for wake flow 

assuming a quartic velocity distribution in the boundary layer and zero 

skin friction in the wake. 	The main objection to this work is the 
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assumption of constant pressure which implies a constant velocity at the 

outer edge of the boundary layer, though the velocity alters quite 

rapidly close to the rear stagnation point and separation point. 	Their 

result is similar in form to equation (2.2-17) with the value of B = 0.94 

and recommended between 250 < Re < 900. 	Grafton (32) tried to account 

for the variation of the velocity at the edge of the boundary layer in 

terms of the velocity within the wake and the angle between the surface 

and contour of circulation. 	The disadvantage here is that a trace of 

the flow pattern within the vortex is required. The author predicts a 

value of 0.9 for the coefficient B of equation (2.2-17) for a Rey-

nolds number about 500 and suggests that the coefficient is slightly 

dependent on the Reynolds number. 

Experimental verification of the theory at large Reynolds number is 

not complete since the theory is only approximate. Most authors corre-

late data using an equation similar to equation (2.2-1) and is usually 

expressed as: 

Sh = 2 	B1Re1/ 2  Sc1/3 	(2.2-18) 

The constant 2 and the value of the exponents in the above equation 

follow from theoretical considerations. 	In general the value of coeffi- 

cient B1  depends on the Reynolds number and various authors report this 

value to lie between about 0.55 and 0.95. 	Frossling (21) suggested 

a value of 0.552 for the coefficient B1  in the range 2 < Re < 1300 

for the mass transfer studies from suspended solid naphthalene spheres 

and drops of aniline, nitrobenzene and water in air. stream. 	This work 

has been criticized by Rowe et- al. (67) since Frossling (21) obtained the 

value of diffusion coefficient by measuring the mass transfer rate at 

zero air velocity and equating the Sherwood number to the theoretical 

value of 2, which in actual case was probably influenced by natural con- 
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vection. 	Ranz and Marshall (63) suggest B1 = 0.6 for 2 < Re < 200 

from evaporation of water drops in air and Linton and Sutherland (51) 

quote BI = 0.582 for 490 < Re < 7580 but without the constant 2 in 

equation (2.2-18). 

Garner and coworkers (26-28) carried out an extensive study of the 

dissolution of solid spheres. 	The maximum Re was about 103. 	Since 

the Grashof number, which is a measure of natural convection, was about 

104  in their study, their (27) results were influenced by this effect 

even at Re about 750. 	In general their data was in good agreement 

with the theoretical solution of Garner and Kee (27) where the coeffic- 

ient B in equation (2.2-17) is suggested as 0.94. 	An important point 

to notice in the studies of Garner and coworkers (26-28) is that they use 

an average velocity in the experimental correlations rather than the 

approach velocity-in defining the Reynolds number. 	In theoretical work 

the latter is used. 	The approach velocity is the undisturbed stream 

velocity and could be taken as the centreline velocity for a uniform 

stream, but for other profiles it could be taken as the average velocity 

over the cross sectional area of the particle. 	Hence in most of these 

-authors' experiments where a nearly parabolic profile existed, the value 

of the coefficient B or B1 would decrease by about VT and would be 

about 0.66 instead of 0.94 if an approach velocity is used to define 

the Reynolds number. 	Garner and Suckling (28), however, tried to use 

an approach velocity but were not successful in correlating two sets of 

data, one for parabolic flow and the other for evenly distributed flow. 

This failure has been attributed (51) to the appreciable turbulence that 

was possibly present in their work. 	Rowe et al. (67) criticized the work 

of Garner and Kee (27) since the :value of the diffusion coefficient used 

by these authors was rather low and this factor alone could effect 

results by a factor of 2. 
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Rowe, Claxton and Lewis (67) carried out an extensive investigation 

on both heat and mass transfer from single spheres in water and air 

streams for 20 < Re < 103. 	They achieved a uniform velocity in their 

experiments. 	Using A = 2, n = 1/3 and m = 0.4 to 0.6 in equation 

(2.2-1), they found from a least square analysis that the minimum error 

variance occurred for m = 0.48, but for the most remote value of 

m = 0.6, the error variance was too small to be significant. 	However, 

they thought that m increased slightly with Re, but for any practi-

cal purpose it could be considered constant for two to three orders of 

magnitude change in Re. They finally suggested the same equation as 

(2.2-18) with the value of B1 = 0.79 and 0.69 in water and air res-

pectively or a single value of B1 = 0.72 with an error of 10% for both 

water and air. 

A recent study for 400 < Re < 1250 is due to Gibert, Couderc and 

Angelino (15) who used an electro-chemical technique employing oxidation 

and reduction of potassium ferricyanide. 	By statistical analysis of a 

large amount of data they suggested an equation similar to (2.2-17) with 

B = 0.882 but the exponent of Re as 0.452. 	However,as suggested by 

Rowe et al. (67) an equally acceptable correlation could be obtained 

with the exponent as 0.5 and a constant about 0.75 since the error 

variance is insignificant over two to three orders of magnitude change 

in Re. 

For a low Reynolds number between 5 and 100 few results are 

known. 	Baird and Hamielec (4) obtained a solution for a Reynolds num- 

ber range of 10 to 100 using the Kawaguti (reference given in the 

authors' paper) velocity profile. 	For Re > 40 there is a region of 

reverse flow in which the velocity gradient is negative resulting in an 

imaginary term in the solution. 	The authors overcame this difficulty 

by suggesting that the reverse region could be treated separately as a 
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foward flow region. 	In this region it is assumed that fresh liquid at 

the initial concentration impinges on the rear stagnation point. They 

realised that this was not a satisfactory explanation since the vortex 

region would contain very little fresh fluid. 	The predicted overall 

Sherwood numbers were in agreement with the values predicted by the 

empirical equation (2.2-18) with a value of the constant B1  about 

0.57 for Reynolds number above 40. At Reynolds number less than 20, 

the theory begins to deviate from the experimental condition because 

the Kawaguti velocity profile does not'reduce to the Stokes' solution 

as Reynolds number becomes very small. 

In the range 5 < Re < 150 Peltzman and Pfeffer (59) experimentally 

studied the local and overall transfer rates from cast benzoic acid and 

betanaphthanol spheres dissolving in water. 	They found that the overall 

Sherwood number could be correlated by equation (2.2-18) with the value 

of B1 as .87 and .47 for benzoic acid and betanaphthanol systems 

respectively. 	They were also able to correlate the data by an equation 

similar to equation (2.2-12) used in very low Reynolds number work but 

with different coefficients. 	The authors observed that'at a Reynolds 

number greater than 25, flow separation occurred and so their data can 

not be considered as a confirmation of the very low Reynolds number theory 

though reasonable correlation was obtained with Pe1/ 3. 	The reason for 

the increased mass transfer rates from benzoic acid spheres compared to 

betanaphthanol system was believed to be due to grain dropping of the 

cast benzoic acid spheres which they used. 	The authors report that they 

used an average velocity based on Reynolds number but Chen (10) one of 

Pfeffer's students compares his data with that of Peltzman and Pfeffer 

(59) and from this it appears that the latter in fact used an approach 

velocity for the parabolic velocity profile which existed in their experi- 

ment. 	Chen (10) reported seven experimental points for the dissolution 
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of benzoic acid spheres in water using the same technique and apparatus 

as Peltznan and Pfeffer (59) and covering a Reynolds number between 8.4 

and 56. 	He suggested no correlation, but for five points lying between 

25 < Re < 56 a.correlation similar to equation (2.2-17) could be sug- 

gested with the value of B as .85 with about 4% deviation. 	It may 

be mentioned that the author used an approach velocity to define the 

Reynolds number. 

Some relevant liquid drop data are available in this range of Rey- 

nolds number. 	Calderbank and Korchinsks' (8) work with mercury drops 

for 20 < Re < 200 may be correlated using equation (2.2-17) with the 

constant B equal to .75 to within ±10%. 	Recently Clinton and 

Whatley (12) have reported mass transfer results from water drops and 

thoria sol droplets fluidized in 2-Ethyl-l-hexanol. A surfactant was 

added in the continuous phase so that the drop behaved as if it were a 

rigid sphere with no induced circulation. The Reynolds number was cal-

culated using the centreline velocity for the parabolic profile which 

existed in their experiments and was between 0.4 and 14. 	For a very 

large number of runs (about 103  determinations for water drops only) 

they correlated their data using an equation similar to (2.2-18) with 

B1  equal to 0.82 and the constant as 5 instead of 2. 	There is 

some scatter between the water drop data which possibly covered an Re ,...+6 

about 5 and the thoria sol data. 	Unfortunately the data is not tabu- 

lated to check if the very low Reynolds number data could be fitted with 

Pe1/3  correlation which is valid for,the high Schmidt number case 

(Sc = 35,700) and also to see if a better correlation could be proposed. 

It appears that the data could be better represented without the constant 

5, in the range 5 < Re < 14. 

Recently, numerical solutions have been presented (3,39,49) for the 

entire laminar range. 	The solution obtained by Leclair and Hamielec 
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(49) is suspect, since their result indicates that the maximum transfer 

occurs about six degrees away from the front stagnation point. 	The solu- 

tion obtained by Al-Taha (3) shows that for Re > 100 and high Schmidt 

number (Sc > 300) equation (2.2-17) could be used with the coefficient 

B equal to 0.6 but without the constant 2. 	For Re < 100 if equa- 

tion (2.2-17) is used, the constant B would take higher values than 0.6 

and would depend on the range of the Reynolds number and the Schmidt num- 

ber. 	Ihme et al. (39) showed that for Re > 10 and large Schmidt number 

 
the coefficient B would take a larger value than 0.6 (e.g. for 

Sc = 103  the constant would be about 0.85). 	The solutions of Al-Taha 

(3) and Ihme et al. (39) are shown in Fig. 6.1-12. 

2.3. 	Forced convective mass transfer in multiparticle assembly  

Considerable disagreement exists among the various workers who have 

studied the mass and heat transfer problem in multiparticle systems. 

Even, the apparently simple task of finding the minimum value of the 

Sherwood number for a particle in an assembly of particles has given rise 

to wide disagreement. 

In general a multiparticle bed may consist of active and inert parti-

cles and can be viewed schematically as shown in Fig. 2.3-1. 

Fig. 2.3-1: 
	

Schematic representation of a multiparticle bed. 

Constant outer 
boundary condition 
at a distance b 
from the active 
particle 

Inert particle 

Active particle 
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It is easy to see that equation (2.2-4) cannot be used to predict 

the Sherwood number even for zero flow since the surrounding medium is 

not homogeneous. However if an effective value of diffusivity can be 

attributed to the medium, then equation (2.2-4) may be used to calculate 

an effective value of the Sherwood number. 	If b is the thickness over 

which the concentration change occurs, y the ratio of inert to active 

1-c  spheres and c the voidage of the bed, then R/b = (---)1/3  and from 

equation (2.2-4) 

2  
Sh

e 
 = 1 

f1-cN1/3  y  
(2.3-1) 

Here, the superscript 'e' denotes an effective value and the subscript 

I mt is used to remind us that this is a multiparticle assembly. 	For 

y >> 1 Miyauchi (55) suggests the following relation for the effective 

diffusivity De: 

	

De = D
AS 
 c/1.5 
	

(2.3-2) 

Then 

	

Sh
m 

= She  c/1.5 
	

(2.3-3) 

when y co, the medium is infinite and She  -4- 2 and for the general 

case Shut  2. 	When y = 1 i.e. all the spheres are active, the med- 

ium may be finite or infinite and 

Shm = 
2  

1 - (1_01/3. 
(2.3-4) 

Here a molecular value of the diffusivity is used since b necessarily 

shrinks in between the spaces of active spheres. 

Cornish (13) has objected to this concept of the limiting value of 

the Sherwood number for the case when y = 1. 	Based on the analogous 

solution available in the field of electrostatics for the capacitance 

between two spheres at the same surface potential, he concluded that if 
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th4 number of spheres was increased, then the progressive value of the 

Sherwood number would decrease and ultimately approach zero. He ex-

plained this due to a non availability of an effective sink in a multi-

particle bed. .Cornish (13) indicated that this possibility of zero 

Sherwood number in a multiparticle bed could possibly explain the very 

low values of the Sherwood number found in some works for low flow rates. 

Zabrodksy (91,92) has opposed Cornish's view and suggested that the ob-

served low values of the Sherwood number at low flow rates in multi-

particle beds was due to effects resulting from non uniformity in flow 

distribution and that equation (2.3-4) could be used to determine the 

true limiting value of the Sherwood number. 	He showed (92) that even 

micro non uniformities of flow distribution could reduce the value of 

the Sherwood number by. several orders of magnitude. His micro non uni-

formity model was criticized'by Rowe (65) but nevertheless it is true 

that at very low Reynolds number dispersion may become important. 

Cornish (13), however, suggested that the surroundings could act as 

a sink when flowing and it seems that the answer to the above controversy 

lies here. 	If the fluid is flowing, however small the flow rate may be, 

it is possible to conceive a steady state. 	For very small flow rates 

the effect of convection on the concentration gradient may be neglected 

and as a first approximation equation (2.3-4) may be used to evaluate the 

Sherwood number. 	However, if the surrounding medium is stationary, it 

cannot act as an effective sink and the Sherwood number would be less than 

2 and for an infinite number of spheres the Sherwood number would tend to 

zero. 	It is difficult to check this viewpoint since experimental determin- 

ation of the Sherwood number at such low flow rates is very difficult. 

Miyauchi et al. (56) report a value of the Sherwood number between 2 

and 10 for Re
s 

between 0.1 and 1 for a maximum of eight active 

spheres. 	Unfortunately this is not representative for a large number of 
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spheres. 	The data reported by Wilson and Geankoplis (88) shows a value 

between 7 and 14 for 10
-3 

< Re
s 

< 10-2. 	Below Re
s 

about 10
-3 

the Sherwood number is less than 5, but at such low flow rates, the 

data ought to be corrected for axial dispersion and natural convection 

which the authors did not take into account since these effects are 

difficult to predict. 	However, these results possibly suggest that 

equation (2.3-4) may be used at low flow rates at least as a rough approxi-

mation. 

In a practical situation, where the effect of convection cannot be 

neglected, any theoretical study is quite involved due to the complex 

hydrodynamic field that exists around a sphere in a multiparticle system. 

Obviously, the first step is to establish the flow field for creeping 

flow. 	Considerable advances have been made and the monograph by Happel 

and Brenner (35) is a useful source of reference for this. 

Voskanyan, Golovin and Tolmachev (84) obtained an analytic solution 

to the problem of convective diffusion for creeping flow past a cubic 

array of spheres using the velocity field obtained by Hasimoto (36) for 

the above system. 	Hasimoto restricted his attention to dilute suspen- 

sions and obtained a solution by a point force approximation method 

where each sphere is replaced by a point force retarding the motion of 

the fluid. 	For a cubic array he obtained the total drag F
T 

acting 

on a sphere as 

F
T 

671-pRU 
(2.3-5) 

1 - 1.7601 (1-e)1 /3  

It is easy to see that for e = 0.82, the drag tends toinfinity and hence 

the solution is valid only for very high voidage range. 

Voskanyan et al. (84) showed that for a sufficiently widely spaced 

lattice and large Peclet number, the problem could be reduced to that 

considered by Levich (50) except for the fact that the concentration of 
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the stream flowing past the K-th sphere in the region outside the dif-. 

fusion boundary layer could be considered equal to the concentration 

which would be produced by all the diffusion wakes at the K-th node of 

the lattice. 	The criterion for the solution to be valid is that the 

period of the lattice must be much greater than R.Pe1l3  where 

Pe
s 
= Re

s.Sc showing the extremely dilute concentration of spheres. 

This range is of little practical interest, though this is the most rig-

orous solution available to date in multiparticle systems. 

Pfeffer and Happel (60) and Pfeffer (61) presented solutions for 

creeping flow using a cell model proposed by Happel (34) for a voidage 

between 0.4 and 1.0. 	The model is based on the assumption that a 

three dimensional assembly of spheres can be considered to be a number of 

identical unit cells consisting of a particle surrounded by a spherical 

fluid envelope. 	The fluid contained in each cell contains the same 

amount of fluid as the relative amount of fluid to particle in the en-

tire assemblage.. The outside surface of each cell is assumed friction- 

less and hence this model is also known as the free surface model. 	Thus 

the entire disturbance, due to each particle is confined to the cell of 

fluid with which it is associated. 	For mass or heat transport the con- 

centration or temperature of the forward moving fluid is assumed to be 

that of the cell boundary. 	Schematically this is shown below in Fig. 

2.3-2. 

Fig. 2.3-2: 	Schematic representation of a unit cell. 
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Particle 
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The appropriate solution (34,35) for the stream function is given as 

(2.3-6) 

where n = R/a and W = 2 - 3n + 3n5  - 2n5. 

Pfeffer and Happel (60) obtained a solution to the convective mass or 

heat transfer problem by the Yuge coordinate perturbation method (90) 

mentioned earlier. Plots of jm  factor against Res  show that the 

jm factor is not independent of the Schmidt number at low Reynolds num-

ber. At very low Reynolds number a straight line with a slope of -1 

is obtained and as the Reynolds number increases the slope deviates from 

unity finally merging into a straight line of slope -2/3 for a Peclet 

number of about 70. 	Thus for large Peclet number (Pes  > 70) the 

following equation is obtained 

Shm 
= B2(c) Pe113 
	

(2.3-7) 

where B2 is a function of bed voidage and decreases with decreasing 

voidage. 	For a single sphere they predict essentially the same result 

as obtained by Yuge (90). 	Pfeffer (61) in continuation of this work 

used the thin boundary layer approximation for the high Peclet number 

low Reynolds number case and proceeded in an analogous manner to the 

Levich (50) solution for a single sphere. 	He obtained the following 

result 

Sh 	= 1.26 [ 1  - (1-c)5" "3 
 
Pe1 / 3 	(2.3-8) 

which reduces to equation (2.2-12) for c 4  1. 	The agreement with the 

experimental data available for Res  < 100 may be considered reason- 

able. 	Yaron and Gal-Or (89) also obtained essentially the same result 

using an integral method of solution. 	The reason why the free surface 
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model using the creeping flow velocity distribution applies at higher 

Reynolds number is explained by the fact that'in a particular assemblage 

flow separation occurs at a higher Reynolds number. This hypothesis is 

also supported by the work of Leclair and Hamielec (48) who numerically 

solved the entire equation of motion through particle assemblages for 

Re
s 

upto 103  using a cell model similar to that mentioned above ex-

cept for the outer boundary condition. These authors (48) assume a 

zero vorticity instead of zero shear stress at the outer cell boundary. 

Rappel and Brenner (35) have raised a minor objection to this boundary 

condition, but there is little difference in the result. 	Leclair and 

Hamielec (48) found that as porosity decreased the flow separation angle 

(measured from the rear stagnation point) and the size of the ring de-

creased with decreasing porosity for the same Reynolds number. For 

example at a voidage of 0.4 and Reynolds number about 100 separation 

would possibly just start. Local mass transfer measurements by Peltzman 

and Pfeffer (59) from an active particle placed in an assembly of inert 

particles also indicates that the separation ring moves back towards the 

rear stagnation point with decrease in voidage. Leclair and Hamielec 

(49) in another paper solved the heat or mass transport problem for large 

Peclet number for the intermediate range of Reynolds number. An examina-

tion of their result indicates that for a Reynolds number of upto 100 

the jm  factors are possibly the same as obtained by Pfeffer (61). 

From a least square analysis they found that the following relationship 

correlated their theoretical results 

- 
m
.854 

= 1.485 Re
s
.632 
 

(2.3-9) 

Since the mass and heat transfer results are difficult to obtain experi-

mentally, it is probably best to check the cell models against experimental 

data available on flow through packed and fluidized beds. 	For example 
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the difference between the theoretical and experimental values of drag 

coefficients as reported by Leclair and Hamielec (48) is 15.5, 4.1, 

-13, -36 and 54% for Res  1, 10, 20, 50 and 100. respectively. 	Dis- 

agreement with fluidized beds is much greater. Values of relative 

velocity predicted by Happel (34) for creeping flow are 25-100% below 

experimental data. 	Leclair and Hamielec (48) suggest that this dis- 

crepancy is due to the oversimplified assumption of a spherical outer 

shell. 

Carberry (9) proposed a solution based on the concept of diffusion 

within a developing boundary layer which is repeatedly destroyed and 

developed as the fluid- passes through an assembly of particles. 	This 

was an extension of the work of Mixon and Carberry (54) who considered 

the case of diffusion within a boundary layer of arbitrary velocity dis-

tribution of the form ; 

. al 
(Gx1) 

(vz1)a2 

"7-U 

(2.3-10) 

where al  and a2  are arbitrary constants and xl  and zi are the 

distance perpendicular to flow and distance in the direction of flow. 

For al = 1 and a2 = 0.5, the form of the velocity distribution is 

similar to the laminar boundary layer theory on a flat plate which is 

given as 

In fact equation (2.3-11) is the first linear term of various power 

series development that describe laminar boundary flow on a flat plate. 

Carberry (9) considered that a multiparticle system could be viewed as 

a series of discrete surfaces of length z1 separated at points by 
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void cells and the flow over the surfaces may be described by equation 

(2.1.41).AssumingthatU=21.11=2U
s/c and the linear length z1 

is equal to one particle diameter, he obtained an expression for the 

mass transfer coefficient. He made the latter assumption from mixing 

data which suggests that more or less perfect mixing occurred every 

particle diameter. The expression for the Sherwood number takes the 

form: 

112 
Re 

Shm 
= 1.15 	s 	Sc113 	(2.3-12) 

£112 

without considering convection normal to the surface, and 

1/2 
Re 

Shm = .974 	s 	Sc1/ 3  
e1/2 

(2.3-13) 

considering convection normal to the surface. 	This model agrees well 

with a wide variety of experimental data, mostly for fixed beds over the 

range 0.5 < Re < 103  and may be considered satisfactory bearing in 

mind the approximate nature of the theory and the diversity of the source 

of data. 

Kusik and Happel (47) employed a free surface model and a boundary 

layer theory to predict the rate of mass transfer in a multiparticle 

system. 	They assumed that the presence of vortices behind particles had 

the effect of lowering the area available for liquid flow. 	Therefore, 

the volume of the vortex behind each sphere was approximated and sub-

tracted from the total volume of the unit cell and they obtained an ex-

pression for the effective voidage E as 

E = c - .75 (1-0(e-0.2) 	(2.3-14) 

Solving the integral velocity and concentration equation they obtained 

the following expression: 



Sh
m 

= 1.85 
c2/3  

(1_6 )1/3 
Pet/3  (2.3-16) 

Re1/2  
Sh
m 

=. .93 	Sc1/3  
E112  

(2.3-15) 
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The maximum Reynolds number recommended for the above equation is about 

300 which is the limit of stable vortices. Moderate agreement was 

found with experimental data. 

Kataoka, Yoshida and Ueyama (43) have recently proposed a semi 

theoretical correlation for packed beds based on the classical hydraulic 

radius model where a packed bed is assumed as a series of inclined 

tubes. The authors viewed mass transfer in packed beds analogous to 

that between a pipe surface and a stream of fluid where the tube radius 

for this model is ed/3(1-c) and the path length d/cos0 where 0 is 

the angle between flow direction and axis of bed and is usually taken 

as 45°. 	The authors showed that the entrance length required for a 

fully developed profile was at least an order in magnitude smaller than 

the path length. For a parabolic profile and high Peclet number 

(Pe
s > 500) they obtained the solution 

The authors found that their solution was quite similar to that of 

Pfeffer (61) and in fact represented data better at low Res. 	Hydraulic 

radius model is not suitable at high voidage due to a (1-c) term in 

the equation. 	Very recently Hughmark (38) used this type of model to 

correlate momentum, mass and heat transfer data where the author sug-

gested that for expanded beds the ratio of fluid path length to bed 

height should be modified empirically between II and 1.0. 

Kuni and Suzuki (46) put forward a channelling model in packed beds 

for low Peclet number (Pe
s 

< 10). 	In this model the bed structure is 

assumed as a stagnant zone where concentration of the fluid is in equili- 



Pes 
Sh
m 

- 	 
6(1 -OS 

(2.3-17) 
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brium with the solids and a channelling zone through which the fluid is 

in plug flow and that mass transfer occurs in the channel. The area of 

the channel is taken equal to half the surface of the solids and the 

channel length is determined by the residence time distribution of the 

fluid. 	The authors showed that for no stagnant zones and Pes  < 15, 

the following expression could be written 

where d denotes the ratio of average channelling length to diameter 

of particle and is unity for the ideal case and increases with non ideal-

ity thus decreasing the value of the Sherwood number. This model pre-

dicts the correct order of magnitude for the Sherwood number obtained in 

gas fluidized beds though physically this is not a very realistic model. 

The theoretical models that have found most acceptance are the free 

surface model of Pfeffer (61) and the boundary layer model of Carberry 

(9). 	For a voidage of about 0.4 the difference between the models for 

10 < Re
s < 500 is probably within the above uncertainties and this ex-

plains why the data of McCune and Wilhelm (53), Gaffney and Drew (22) 

and Thodos and Hobson (78) fit both the models. 	For Re
s 

< 50 reliable 

data is scarce. 	Since the various models are not conclusive it becomes 

necessary to rely more on the experimental results which might aid in 

better understanding and formulation of more realistic models. 

A large amount of experimental work is available on the mass and 

heat transfer problem from particles in a particulate bed. 	Barker (5) 

in 1965 listed 486 references for heat transfer in fixed and fluidized 

beds. 	Gelperin and Einstein (30) recently suggested a particle to fluid 

heat transfer correlation as 

2/3 

Re )Shm = 0.4 	Sc1/3  (2.3-18) 
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Res  
for — > 200. This correlation is based on existing heat transfer 

data and may deviate 100 to 200%. Unfortunately, the overwhelming 

part of the work carried out was with gas fluidized beds and very few 

reliable results are known for Re
s < 50 in liquid fluidized beds. 

A number of authors (77, 59, 29, 41) have made some useful studies 

of local and overall transfer rate from single particles placed in an 

assembly of particles. 

Thoens and Kramers (77) investigated the mass transfer rates from 

benzoic acid and porous spheres soaked with liquids in various packings 

of inert spheres for a voidage between 0.26 and 0.48 in water and 

gaseous streams. 	They found that in general the results were quite 

complex which they attributed to different flow conditions that could 

exist for different voidage but for same Re
s
. 	For a rough average 

of 438 runs they proposed that for 40 < Rei  < 4000: 

Sh
m 

= 1.0 Re?/2  Sc1 /3  1 (2.3-19) 

where 	Re. -  dUp  
1  p(1-e) • 

difficult to correlate both liquid and gas runs by a single equation. 

This is due to different order of the thickness of the concentration 

boundary layer for the two systems particularly at low flow rates. 

Peltzman and Pfeffer (59) found that presence of an inert sphere 

in front of the active sphere caused the separation ring to move towards 

the rear stagnation point and with sufficiently large number of particles 

it is possible that separation does not occur until flow is substantially 

increased. 	They found that an axial and equilateral triangular arrange- 

ment reduced the mass transfer rate due to an effective "area blockage". 

However an open triangular and hexagonal arrangement gave an overall 

mass transfer higher than for a single particle, simulating the behaviour 

of a large array of particles.' In all studies it was observed that axial 

The authors found that it was 
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proximity of other spheres had a larger effect than radial proximity. 

Due to the complex form of the relationship among various groups for 

different arrangements, the authors could not propose any generalised 

correlation. 

Gillespie, Crandall and Carberry (29) studied the local and average 

heat transfer coefficients from an internally heated copper sphere situ-

ated in a randomly packed bed of inert spheres using air as the contin- 

uous medium. 	By examining local heat transfer coefficients, they found 

that over certain regions the Sherwood number was dependent on the 

square root of the Reynolds number, so that in these regions the velocity 

profile could be assumed to be described by boundary layer theory. The 

effect of repacking was to alter the local transfer coefficient, but had 

little effect on the average value. 	Their work also showed entrance 

and wall effects. 	For the bulk of the experiments they proposed the 

following correlation at the centre of the bed: 

Sh
m 

= 0.63 Re0.65 
s (2.3-20) 

Near the wall, the coefficient increased to about 0.75. 

Jolls and Hanratty (41) studied the mechanism of flow and mass trans-

fer around a single particle in a packed bed (e = 0.41) using the 

electrochemical reduction of ferricyanide at a high current density on a 

nickel cathode embedded in the test sphere. 	From a knowledge of mass 

transfer to an electrode of small size, they could calculate the velocity 

gradient and hence the shear stress. 	With the exception of the extreme 

rearward portion of the spheres, the effect of Reynolds number on the 

local mass transfer rate and local shear stress suggests that flow can 

be described by a three dimensional boundary layer which is in broad 

agreement with the investigation of Gillespie et al. (29). 	Jolls and 

Hanratty, however, found that the exponent of Reynolds number was some- 
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what greater than 0.5. 	This indicates that in the rear of the sphere 

mass transfer rate had a greater dependence on flow than predicted by 

boundary layer theory. 	A previous investigation by these authors (40) 

showed that the laminar-turbulent transition occurred in the range 

Re
s 

between 100-150 with large flow fluctuations. 	However, their 

measured mass transfer showed no dramatic changes in the average rates. 

They found that a single correlation was difficult to obtain due to the 

statistical variation of the environment, but for a large number of runs 

for which the bed was repacked before each experiment they suggest the 

following correlations: 

	

Shm = 1.59 Re°'56  Sc1/ 3 	for Re s> 140 s

Sh 	= 1.44 Res3.58 scli3 	for 	35 < Res < 140 

	

Shm 
= 1.64 Re0.6 sc1/3 	for 	Re 

s< 35 s 

(2.3-21) 

(2.3-22) 

(2.3-23) 

The authors stated that for Res < 35, there were wide variations and 

that this result is of questionable significance. 	In another study, 

Hanratty et al. (42) reported mass transfer data in a packed bed in 

cubic array (c = 0.26) using the same electrochemical technique and 

suggested 

Shm = 2.39 Res
0.56 

 Sc113 
	

(2:3-24) 

which is possibly valid for 30 < Res  < 103. 	These results are shown 

in Fig. 6.1-18. 

The experimental work mentioned so far does not include a study of 

the effect of voidage. 	Theons and Kramers (77) varied voidage in a 

limited range 0.26 < e < .48 but their correlation cannot be extended 

to a higher voidage range due to the appearance of a (1-e) term. 	Rowe, 

Claxton and Lewis (68) made overall heat and mass transfer measurements 

for a voidage between 0.365 and 0.632. 	Following the approach of 
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their single particle study (67) they correlated data as 

Shm  = 
2  B3Rel: Sc1/ 3 

1 _ (1_01/3 
(2.3-25) 

where the first term is the value of the Sherwood number for the stag- 

nant case as given by equation (2.3-4). 	The value of m is given 

3m 
by 

2  
3n-77 = 4.65 Re

0.28 and B3 = 0.61/e in air and 0.7/e in water. 

The value of m is about 0.5 for the usual range of interest and hence 

_1 
Sh
m 

cc e 	instead of e
-1/2 

as predicted by the boundary layer model. 

The authors checked their data with a few fluidized bed runs and found 

reasonable agreement. However, in their experiments they used single 

benzoic acid spheres and inert table tennis balls and the authors do not 

mention whether segre50iwloccurred due to the density difference. 

Chu, Kalil and Wetteroth (11) obtained mass transfer data for the 

evaporation of naphthalene in an air fluidized bed and obtained the 

following correlations: 

3m  = 5.7 Re.
-0.78 	for 	1 < Re. < 30 
1 

(2.3-26) 

3 m 
= 1.77 Re.

-0.44 
 for 30 < Re. < 104 
1 

(2.3-27) 

This work has quite often been quoted in the literature, though the 

experimental scatter is large (see Fig. 6.1-7). 	Also the use of Rei  

is not suitable for beds having a high voidage and these authors possibly 

carried out experiments for e > 0.9. 	Evans and Gerald (17) measured 

mass transfer rates from benzoic acid granules to fixed and fluidized 

beds for Res 
between 1 and 100. 	The authors-calculated surface 

area from pressure drop data and this could have introduced a large error 

in their result since they reported difficulty in obtaining reliable 

pressure drop data. 
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Thodos and coworkers (78-83) have reported several studies on the 

mass and heat transfer rates in fixed and fluidized beds. 	In almost all 

the work, except for few fixed bed experiments, gas was used as the con-

tinuous medium.. Initially, the workers neglected the effect of longi-

tudinal mixing, but later Thodos and Petrovic (81) corrected for this. 

The latter authors correlated both packed and fluidized bed runs by the 

following equation: 

jm= jm  e = 0.589 Re-s0.427 	(2.3-28) 

for 20 < Re
s 

< 2000. 	Thodos and Wilkins (82) and Thodos and Yoon 

(83) have experimentally determined the actual driving force in gas 

fluidized beds using travelling sampling probes and found that for all 

practical purposes, longitudinal dispersion could be neglected for the 

flow range they considered. 	The latter authors suggested the correla- 

tion for 100 < Re
s 
< 450 as 

j/;1  = m 	
= 0.947 Re-0-5 
	

(2.3-29) 

Beek (6) discussed the form of the correlation that would describe 

-mass transfer in both fixed and fluidized beds. 	As in practice one 

description of mass transfer over the whole range of voidage would be 

preferred, the author suggested the following correlation in a multi-

particle bed: 

She = B4 Rem  Sc1/ 3 
	

(2.3-30) 

where B4 is only slightly dependent on voidage and hence can be 

assumed constant and m has a value about 0.5 	At low Res the 

author referred to the work of Snowdon and Turner (72) since this is one 

of the few reliable experimental studies in liquid fluidized beds. 

These authors (72) studied mass transfer in a shallow liquid fluidized 
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bed of ion exchange particles using the H
++

-Chloride, H
+
/Na 

Acetate and H
+
/1Cu

-1-1.
-Chloride systems. 	The mass transfer coefficient 

was evaluated assuming plug flow, this being checked by varying the bed 

height. They expressed both fixed and fluidized bed results by the 

following equation: 

0.81 
Sh
m 

	Ref/ 2  Sell 3
s  

(2.3-31) 

Beek (6) suggests that the above correlation is valid for 5 < Res  < 50 

• 
and in a higher range 20 < Res 

< 2000, equation (2.3-28) could be used 

(see Fig. 6.1-17). 

Quite recently Couderc and Angelino (14) have published results for 

liquid fluidized beds for 100 < Re < 300 by following the dissolution 

of benzoic acid particles. 	They expressed results' as Shm•Sc-113  

against e on logarithmic coordinates with Res  as a parameter and 

obtained a series of lines with slopes of -1.98, -2.04, -2.17 and 

-2.21 for a Re
s 

of 150, 175, 200 and 225 respectively (see Fig. 

6.1-8). 	They therefore assumed a mean value of the slope as -2 and 

suggested the following correlation with an average deviation of 4.5% 

-and a maximum of 20% as 

0.054 Re (2.3-32) Sh 	- 	s 
Sc113 

62 

This correlation is satisfactory as far as the authors' data is con-

cerned but is unlikely to be valid over a wider range since the slopes 

mentioned above vary in a systematic way with Res. 	
The authors also 

studied the effect of bed dilution by coating benzoic acid particles 

with paint so that all the particles had similar characteristics and 

then found a 10% reduction in the mass transfer coefficient. 	This is 

in contradiction to the observation of Wilson and Geankoplis (88) who 

found no such effects. 
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One interesting study is due to Mullin and Treleaven (57) who meas-

ured mass transfer rates from benzoic acid spheres for voidages upto 

unity and Res  between 50 and 700. They obtained single particle 

results in good agreement with the results of Garner and Kee (27) using 

an average velocity based Reynolds number. 	Their method of correlation 

is rational since a flat velocity profile existed in the test section. 

For the multiparticle case, they found no observable difference in mass 

transfer whether or not a particle was fixed and the results could be 

expressed in a similar form to single particle results except that the 

coefficient increased with voidage. 	Mullin and Treleaven (57) assumed 

that the increase in mass transfer rate in the multiparticle bed was due 

to increased turbulence in the fluid stream generated by a fluctuating 

velocity gradient and wake flow of neighbouring particles. 	By a tor- 

tuous argument, they suggested a form of correlation similar to equation 

(2.3-27) which is empirically successful. 	From their work it may be 

seen that the mass transfer rate is more than doubled at a voidage of 

0.5 when compared to a single particle for the same flow rate and an 

increase of this magnitude seems improbable when attributed to turbu- 

lence alone. 	Though turbulence may be a factor, the increase in mass 

transfer rate is primarily due to an increased velocity gradient of the 

fluid as it passes through the voids in a particulate bed. 

2.4. 	Summary of forced convective mass transfer studies from solid  

spheres in single and multiparticle assembly  

Mass transfer rates for single particles can be predicted from the 

theory for the limiting case of creeping flow and boundary layer flow. 

However, for the latter case the theoretical predictions are not exact, 

because of the difficulty in describing the flow in the wake. 	Experi- 

mental results are usually correlated by most workers using the equation 
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(2.2-18): 

Sh = 2 + Bl Rel./2  Sc11 3  

where the coefficient B1 has been reported between 0.55 and 0.95. 

In the above equation, some workers use the constant 2 to account for 

the effect of molecular diffusion without regard to the fact that both 

convection and diffusion are responsible for convective mass transfer in 

the fluid phase and that molecular diffusion occurs only at the solid- 

fluid interface when the rate of transfer is small. 	Thus the effect 	of 

convection is to modify the concentration gradient and thus the straight-

forward addition of conduction and convection terms is not meaningful. 

Others believe that the Sherwood number should be 2 when Re 4,  0 with-

out regard for the Reynolds number range for which the data was obtained. 

For example, it is pointless to use equations similar to (2.2-18) when 

correlating high Reynolds number data. 	Indeed Sh 4- 2 when Re 4- 0 

as may be seen from equation (2.2-13). 	If equation (2.2-18) is used 

in correlating data, the constant term should be obtained from regression 

of data and since this equation would contain more than one unknown it 

would be more appropriate to choose an equation of the form (2.2-17). 

Recently Watts (85) has obtained a perturbation solution for the entire 

Peclet number range assuming flow to be potential. 	He also believes 

that the constant term is not necessarily 2. 

Theoretical solutions indicate that for boundary layer flow the 

coefficient B in equation (2.2-17) is about 0.6 and if the same equa-

tion is used for low Reynolds number B should be slightly higher. 

However, a correlation of this type covering a wide range of Reynolds 

number in the low range is not very accurate and hence this type of corre-

lation should be used over a restricted range of the Reynolds number with 

different values of B. 	Experimental data supports this view and the 
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value of B for 10 < Re
s 
< 100 seems to be between 0.75 and 0.85. 

Disagreement abounds in the literature amongst various experimental 

workers. A number of workers use the average velocity instead of the 

approach velocity in their interpretation and these may vary by a factor 

of 2 for a parabolic velocity profile. 	Liquid-solid systems tend to 

show a higher mass transfer rate than gas-solid systems for the same 

flow rate due to a generally higher Schmidt number in the former. This 

reflects an inherent difference between these two systems particularly 

at low flow rates. 	In some cases the value of the diffusion coeffici- 

ents were not known accurately. Also the use of cast organic acid 

spheres could have caused some grain dropping and this would explain the 

somewhat higher results that have been observed using such particles. 

Surprisingly, not all workers made simple direct measurements. 	For 

example, mass loss was often determined by photographing the diminishing 

particles instead of direct weighing. 	Almost all workers using solid 

spheres used fixed spheres and the effect of sphere support is not known. 

Other effects, such as free convection and turbulence which are diffi-

cult to account for or to eliminate were often present to a varying 

degree. 

The situation in multiparticle systems is not clear. 	Even the 

limiting value of the Sherwood number in a bed of particles remains un- 

answered. 	Some authors believe that the limiting value of the Sherwood 

number in a bed of active particles is less than 2 and tends to zero 

for an infinite number- of particles. . It appears that this concept is-

probably true only at zero flow rate, but for very small flow rates, equa-

tion (2.3-4) may be used as a first approximation. 

Various models have been suggested to predict theoretically the heat 

and mass transfer rates in a multiparticle assembly. 	The most widely 

used models are the cell model of Pfeffer (61) and the boundary layer 
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model of Carberry (9) although the difference between the predicted 

results using these two models in the range 10 < Re
s 

< 100 is possibly 

within the limits of the precision of some of the experimental data. 

However, some basic differences between the two models can be easily 

seen. 

The complex term in equation (2.3-8) for the cell model is roughly 

equal to 1/e (88) and the equation may be written as 

1.26 
Shm = 	Re1/ 3  Sc1/ 3  

For a fluidized bed, using the Richardson-Zaki correlation (64) 

Re 
s 
 /Re

o  =
N
, equation (2.4-1) can be written as 

Sh = 1.26 Re 
1/N  Re  1/3-1/N  Sc

1/3 
• m 	o 	s 

(2.4-1) 

(2.4-2) 

where Re
o 

is the terminal settling Reynolds number. 	Similarly equa- 

tion (2.3-13) can be written as 

Sh = 0.974 Re
1/2N Re1/2-1/2N Sc1/3 

s (2.4-3) 

For N = 3, which would be a representative value in the range of Re 
 

of interest, the cell model predicts a constant value of the Sherwood 

number at all values of Re
s 

whereas the boundary layer model predicts 

Sh
m 

Rel". Experimentally this dependence of Sh
m 

on Re
s 	

been s

found to be between these two limits. 	The cell model employed by 

Pfeffer (61) and the hydraulic radius model of Kataoka et al. (43) agree 

quite closely at low voidage (within 7% at e = 0.4) but large deviations 

occur as the voidage is increased (about 25% at e = 0.8). 	The channel- 

ling model of Kuni et al. (46), though satisfactory in explaining some 

very low Reynolds number results, is in clear disagreement with the other 

models. 	Since the channelling model is not very realistic in a physical 

sense any agreement must be considered fortuitious. 
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Relatively little data is available in the range Res  < 50 especi- 

ally for liquid fluidized beds. 	Detailed studies of a single particle 

in an assembly of particles suggests that flow around particles may be 

approximated to boundary layer flow. 

The most important source of error in multiparticle work is the de-

termination of surface area, especially for small particles of irregular 

shape that are frequently used. 	Direct or indirect determinations using 

pressure drop data are usually subject to significant errors. 	Free 

convection and dispersion effects may also have been present in some of 

the experiments. Also difficulties are experienced in determining the 

concentration and temperature at the surface of particles. 	In general 

fluidized bed data tends to show more scatter than fixed bed results 

and this is due to the uncertainty of voidage determinations. 	Finally 

turbulence is an effect which is difficult to take into account. 
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3. CHOICE OF THE EXPERIMENTAL SYSTEM 

The object of this work was to obtain reliable convective mass 

transfer data in liquid fluidized beds in the flow Reynolds number range 

(Re
s 

20). 	The following types of study are possible in a multiparticle 

system: 

1. Local and/or overall studies around a single particle in a 

multipdrticle assembly. 

2. An integral analysis of the entire multiparticle system. 

The first of these studies is more fundamental, since this would yield 

.detailed and overall knowledge of the multiparticle system, but experi- 

mentation is difficult. 	The latter is of direct interest for design 

and is slightly easier to perform experimentally. 	Unfortunately, pre- 

cise data. in such studies is often obscured by effects such as axial and 

radial dispersion which have a pronounced effect on the rate phenomena 

and are difficult to account for. 	In view of the more practical rele- 

vance, overall mass transfer data has been obtained in a liquid fluid-

ized bed using a shallow bed to eliminate liquid mixing effects. 

Although many different solid-liquid systems could be used for this pur-

pose, an ion exchange system is chosen here because it possesses several 

excellent physical characteristics. 	The important advantages are:.  

1. The ion exchange particles are spherical and particle size 

changes only slightly during the mass transfer process and therefore 

the total surface area is accurately known. 

2. Reliable measurements can be made at low concentrations of the 

exchanging ions resulting in negligible natural convection and negligible 

mass flux effects on the mass transfer coefficient. 	It may be mentioned 

here, that the interference of the above mentioned factors was possibly 



responsible for the uncertainties in some of the fixed and fluidized 

bed work mentioned previously. 

Although ion exchange systems are suitable from the physical point 

of view, the interpretation of data is considerably more difficult and 

this may offset some of the important advantages already mentioned. 

This is because the driving force for the diffusional flux consists of 

two terms, one due to a concentration gradient and the other due to an 

electric potential gradient arising as a result of the unequal mobility 

of the ions. For the experimental work, it will be seen that a neu-

tralization type reaction constitutes a very suitable physico-chemical 

system. 	In particular the following ion exchange reaction was chosen: 

RH
+ 

+ Na
+
OH -+ RNa

+ 
+ H2O 

where R is the negatively charged solid matrix. 



CH AP TER 4 

THEORETICAL 

	

4.1. 	Mass transfer from a single solid sphere by forced 

convection involving ion exchange reactions 

	

4.2. 	A model for forced convective mass transfer in a 

multiparticle assembly 

	

4.3. 	Theory of Experiment: Evaluation of mass transfer 

coefficient from experimental data in a shallow 

liquid fluidized bed 

• ,57 

page 

58 

63 

66 



.58 

4. THEORETICAL  

4.1. 	Mass transfer from a single solid sphere by forced convection  

involving ion exchange reactions  

A detailed description of diffusion in ion exchange systems is given 

in Appendix A.1 and A.2. Equation (A.2-4) shows how the diffusional 

fluxes for a binary ion exchange system involving counter-ions 'A' and 

'B' and co-ion 'C' in the solvent 'S' may be expressed in terms of 

only the concentration gradient of one of the species. To obtain an ex-

pression for the diffusional flux of a particular species it is convenient 

to consider specific ion exchange reactions. 	Here two specific cases 

are considered. 

1. This case arises in a neutralization type of ion exchange reac- 

tion. 	In such cases the counter-ion diffusing out of the ion exchange 

particle phase is instantly consumed at the exchanger-liquid interface so 

that only one counter-ion is present in the liquid phase. Then one may 

write 

J* = 0, 	C
B 	

0, 	 (4.1-1) 

where 'B' is the counter-ion that is being consumed. 	The condition 

that C
B 

= 0 implies that component 'B' disappears to form some other 

component and in this case must produce 'A', 'C' or the solvent obey-

ing the constraints (A.2-2) and (A.2-3) since the analysis has been 

restricted to the above four components only. 	Using equation (4.1-1) 

and equation (A.2-4) the diffusion flux for component 'A' may be 

written as 

(Z + 
 

= 	A C AS CS  J VC
A A 	Z (D + D ) 

C AS CS 

D V C
A 
	 (4.1-2) 
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where 
4.Z)D 	D 

A C AS CS (4.1-3) 
ZC (DAS + DCS 

 ) 

Equation (4.1-2) shows that the diffusional flux of component 'A' is a 

product of its concentration gradient and the constant term D comprising 

the effective binary diffusion coefficients of the ions 'A' and 'C' in 

the solvent '5'. 	This equation is similar to Ficks law of diffusion. 

Constant D may be thought of as a coupled diffusion coefficient and can 

be calculated from effective binary diffusion coefficient data. 	The pro- 

blem of convective diffusion is then analogous to other solid-liquid sys-

tems which are characterised by constant diffusivity e.g. the benzoic 

Acid-water system as discussed in Chapter 2. 

2. 	In this case all the ions are present in the solution phase and 

this represents a more general case of binary ion exchange. Here it is 

assumed that the co-ion current is zero after co-ion shift occurs (37a). 

This is the usual quasi stationary steady state assumption. 	Thus for 

this assumption 

J* = 0, 	zc 	0 
	

(4.1-4) 

Using equations (4.1-4), (A.2-3) and (A.2-4) the expression for the dif-

fusional flux of species 'A' may be written as 

D D 	1Z C (Z 	) - ZC(Z-Z)1 
AS 	BS CCBC 	A A B A  

	

JA 	
- 	 COCA 	(4.1-5) 

	

A 	D
BS  ZC  CC 

 (ZB  +ZC  ) 	ZACA(ZADAS
-Z
B
D
BS
)   

Again, the diffusional flux of a species can be represented by the pro-

duct of its concentration gradient and another term; but this time the 

second term is not constant but depends in a complicated way on concentra-

tion. 

Since equation (4.1-5) contains both CA  and Cc  it will be useful 

to obtain a'reiationship between these quantities. 	From equations 
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(A.2-1,2,3) and (4.1-4) an additional relationship between Cc  and C
A 

may be written as 

D
AS 	) Z

A  Z(--- 1 C DBS - dC 
C 

dCA 	 D 	C
A 2 (ZB  ZC C + Z

2
) + (Z

A 
 - Z Z ) - 
DAS 

BS 	CC  Cc 

(4.1-6) 

Integration of equation (4.1-6) between the bulk of the fluid and any 

point in the concentration boundary layer gives the desired result. 

Consider the specific 

flux can be written from 

J*
A 

 

where 	a 

Also equation (4.1-6) 

C 
C 
--. U 
Cb 

where 	C
Ab 	

and 	CCb  

case for 

equation (4.1-5) 

2D
AS 

Z 	= 	= Z 	The diffusional A 	C.  

as follows: 

VCA 	(4.1-7) 

to obtain 

1 2 

(4.1-8) 

concentration of species 	'A' 	and 

= 	C
A + 2 a — 
Cc  

D
AS 1 

DBS
- 

can be integrated 

CAb a -c-F--- + 1 

= 	
Cb 

[ _ CA 
a CA 

	+ 1 
C 

denote the bulk 

'C' -respectively. 

The steady state continuity equation for ions 'A' may be written 

as (7a): 

v.VpA  = - V.jA 	 (4.1-9) 

In dilute •solution v = v* . and jA  = MAJI . 	Using equation (4.1-7), 

the continuity equation in spherical coordinates may be written as 
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ac 	ac ) 
A 	A 	1 a 	

2D
AS 	2 

ac
A 

v
r 	

+ 
ar 	

ve 
 ae =r2 Dr 	aC

A 
 /C
C 
 + 2 r  ar 

(4.1-10) 
and 

(A.3-1) 

where r and 6 are radial and angular coordinates and v
r 

and v 6 

the corresponding velocity components. 	The boundary conditions are 

r = R, 	C
AAR 	

(4.1-11) 

and 

r =A-tb, 	C
A 

= C
Ab 

where R is the radius of the sphere and b the thickness of the con- 

centration boundary layer. 	In writing equation (4.1-10) it is assumed 

that-the concentration boundary layer is thin which will be true if the 

Peclet number of the system is high. 

Equation (4.1-10) is non linear and contains two dependent variables 

C
A 

and C linked by a quadratic relationship (see equation 4.1-8). 

An exact solution seems difficult and hence an approximate solution will 

be attempted. 	The method of solution is based on an integral method 

of analysis due to Friedlander (18) and has been mentioned in Chapter 2. 

The detailed solution is given in Appendix A.3. 

In this method, equation (4.1-10) is partially integrated across 

the concentration boundary layer and an assumed concentraticn profile is 

substituted into the resulting equation. 	This assumed concentration pro- 

file should satisfy as many boundary conditions as possible so that the 

assumed and the actual profile will match fairly closely. 	Since there 

are two concentration terms, i.e. CA  and Cc, it has been found conven-

ient to work with a new variable, called the equivalent fraction and 

defined as follows: 

(4.1-12) 
and 

(A.3-11) 



1 1 / 3  y
AR 

.4- y
Ab 	

0, 	F 
12 

1 	(a+2)1/3  

(24)1/3 	(1+a) YAR 	YAb 
	1, 

(4.1-15) 
and 

(A.3-33) 
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To obtain an expression for the mass transfer coefficient a local mass 

transfer coefficient K
v
(0) has been defined: 

JAI 
 = Kv(e) C... (V 

LAD AR yAb)  
x=0 

(4.1-13) 
and 

(A.3-29) 

where the subcript v in Kv(e) is used to denote the fact that the 

diffusion coefficient of the system is not constant and x = r-R. 	This 

definition of the mass transfer coefficient was originally suggested by 

Snowdon and Turner (73) who also pointed out that although C
Cb 

 
(YAb YAR)  

was not the true driving force, since C
Cb

. CC1' it was a convenient 

measure of it. 	The mass transfer coefficient averaged over the whole 

surface of the particle is designated 	andd the overall mass transfer 

coefficient is given by the expression as follows: 

2/3 
D
2/3 

= 1.31 

 

d2/3  

AS 
F  sine de 

0 

(4.1-14) 
and 

(A.3-31) 

where 	is the second derivative of the stream function at the surface 

of the sphere and F is a complicated function of v -Ab' YAR and a and 

is given by equation (A.3-32). 	The quantity F has the following 

limits: 

Equation (4.1-14) can be written in a modified form as follows: 

2/3 
Let 	F1 	= F 

and 
	

D
eff 

= D
AS
Fi 	 (4.1-16) 
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Then equation (4.1-14) can be written as 

D213  
eff rc-  = 1.31 
d2/3  

2/3 

n  

sine de 	(4.1-17) 

This expression of the mass transfer coefficient where v . D213  is 
eff 

similar to cases for which the diffusion coefficient is constant. 	The 

diffusion coefficient D
eff 

given by equation (4.1-16) can be thought 

of as the effective diffusion coefficient of the system and may be used 

in the dimensionless correlations. 

4.2. 	A model for forced convective mass transfer in a multiparticle  

. assembly  

The various theoretical models for multiparticle systems have been 

discussed in Chapter 2. 	It is clear from this review that any exact 

description of momentum, mass and heat transfer in multiparticle systems 

is very difficult and at best only modest agreement between theory and 

experiment has been found. 	The success of any theoretical model depends 

on how closely it represents the actual physical situation. 	Most of 

the models were primarily suggested for fixed beds and despite the fact 

that voidage was recognised as an important variable, none of the models 

predict the dependence of the mass transfer coefficient on voidage suf-

ficiently well. 

Various studies, particularly the experimental work of Jolls and 

Hanratty (41), Gillespie et al. (29) and the theoretical work of Leclair 

et'al. (48) suggest that the flow in a multiparticle system is possibly 

dictated by boundary layer theory even at low flow rates. 	This explains 

why the overall Sherwood number varies roughly with the square root of the 

Reynolds at low flow rates in multiparticle systems. 	An examination 	of 

local mass and heat transfer values reported by the authors (41, 29) shows 
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that several boundary layer zones separated by regions of complex flow 

pattern exist around a single particle in an array of other particles. 

In a fixed bed the number of such zones may be two or three. The flow 

in these zones is dictated by laminar boundary layer theory since the 

Sherwood number-Reynolds number relationship in these regions is very 

close to a square root dependence. However, the local Sherwood number 

in these regions does not show a smooth variation as it does for a 

single sphere. 	Outside these laminar boundary layer regions, the 

experimental studies shed little light'except to indicate the complexity 

of the flow pattern. There is however no work available at higher void-

,age which would show, how these boundary layer regions depend on the 

voidage. 	It may be argued that the number of individual zones showing 

laminar boundary layer characteristics would decrease as voidage in-

creases. . However, these individual regions would occupy a larger por-

tion of the surface of the sphere, i.e. the length of such zones would 

be greater at higher voidage than at lower voidage. Thus the length of 

the boundary layer regions are in some way related to the voidage and 

this explains why the boundary layer model of Carberry (9) has not been 

able to determine the dependence of voidage on transfer rates, although 

it has been successful in explaining fixed bed results which were mostly 

carried out at a voidage of about 0.4. 

A modification to the boundary layer model proposed by Carberry (9) 

is now proposed. 	In a multiparticle assembly, Carberry suggested that 

the point velocity relative to the average interstitial velocity could 

be described as follows: 

.815 xl 

  

(4.2-1) 
U. 

U. 

where xl is the distance perpendicular to flow, z1 is the distance in 
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the direction of flow, Ui  is the interstitial velocity = Us/c 

where U
s 

is the superficial velocity and v is the kinematic viscos-

ity. From boundary layer theory for flat plates and assuming that the 

velocity at the boundary layer edge is twice the interstitial velocity 

the author obtained the constant of the above equation. 

In view of the approximations that have been made in applying planar 

boundary layer theory to a spherical particle in an assembly of other 

spheres and the fact that such systems do not show a simple flow 

pattern, it seems that a more rational'approach would be to determine 

the approximate form of the functional dependence of various groups and 

to determine the constant from experimental data, which hopefully would 

compensate for some of the weaknesses of the model. With this in mind 

it is here postulated that instead of equation (4.2-1), the velocity 

relative to the average interstitial velocity is represented by 

G1x1 

  

(4.2-2) U. 
‘)z1 
U. 

where G1  is a constant. 	Using the solution given by the author (9), 

the mass transfer coefficient Kc . is given as 

GD2/3 , 
• - AS  

, 	(4.2-3) 
(zi/U.)2  v" 

where DAS is the binary diffusion coefficient taken as constant 

between the diffusing species 'A' and solvent 'S' and R
c 

is the mass 

transfer coefficient for this constant diffusivity system defined in 

terms of a concentration driving force. 

Carberry (9) assumed that the length over which the boundary layer 

development, occurred is equal to one particle diameter. 	He based this 
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on the mixing data available for gas and liquid fluidized beds. 	It 

has been mentioned earlier that the length oeboundary layer regions is 

expected to depend on voidage in some way. This dependence is proposed 

by the simple relationship 

z1  « e d 

= G3 e d 

Using the above expression for z in equation (4.2-3) 

2t8 
1 _  G4DAs 

c.
‹ 
  (cd/U.1)2 v1/6 

and from U. = Us
/e the above equation can be written as 

Re1/2  
Shm = G4 	

s 	Scli 3  

(4.2-4) 

(4.2-5) 

dU
s
p 	 Te 

m 	

d 
where 	Re = 	Sc 	and Sh = 

pDAS 	D
AS 

• 

The constant G4 may now be determined experimentally and should be 

constant for a wide range of solid-liquid system. Also, since equa-

tion (4.2-5) is proposed for the entire range of voidage, it should be 

possible to determine the constant.  G4 from single particle work. 

4.3. 	Theory of experiment: Evaluation of mass transfer coefficient  

from experimental data in a shallow liquid fluidized bed  

The mass transfer coefficient in a multiparticle system can be 

obtained by a differential macroscopic (87) mass balance. 	The rigorous 

derivation of the macroscopic field equations is difficult and recently 

several workers have devoted their attention to this subject (87). 

In a two phase fluidized bed, the variables vary both in space and time 
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and the average field equations can be obtained in several ways. 

Panton (58) obtained the average equations for a two phase system by 

first averaging the variables with respect to a local volume which is 

large compared to the solid particles and yet small compared to the 

dimensions of the containing vessel. Anderson and Jackson (2) do the 

local averaging in a region containing many particles since this 

smooths out fluctuation's in space and time and hence the region is 

larger than that considered by Panton (58). At the present time there 

is still some controversy amongst workers about the averaged equations 

and in particular about the averaged equation of motion. 	It is to be 

noted that any averaging, whether with respect to time, area or volume 

will involve some sacrifice of detailed information and this is usually 

compensated for by some kind of empiricism. For example, consider a 

single phase fluid in turbulent flow. The averaging is done with res-

pect to time and as a result some new terms known as the 'Reynolds 

Stresses' appear in the equation of motion for which an empirical data 

correlation is used. 	Similarly, if a solute is introduced to a solvent 

flowing in a tube at some point in the stream and it is desired to deter-

mine the concentration of the solute as a function of time and position, 

then the usual approach is to average the continuity equation for the 

solute over the area of the tube. The result would be an average con-

tinuity equation in the axial direction where in this equation the dif-

fusion flux is replaced by a longitudinal dispersion flux. 

The macroscopic mass balance equation for a component in a fluidized 

bed in the most general case may be quite complex and difficult to solve. 

This is chiefly due to the effect of longitudinal dispersion, which is 

empirical in form and the dependence of the solid-fluid interface boun- 

dary condition on bed height. 	However, in a shallow liquid fluidized 

bed, the following reasonable assumptions may be made and this yields a 
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relatively simple equation. 	It may be assumed that: 

1. The liquid in the bed is in true plug flow i.e. there is no 

liquid mixing. 

2. The solid is perfectly mixed and hence the equilibrium solid-

liquid interface composition is the same everywhere in the bed. 

3. The solution is dilute, so that the flux across the solid-

liquid interface is effectively a diffusional flow, i.e. no bulk flow 

 
through the interface. 	Hence the flux across the interface can be des- 

cribed in terms of a mass transfer coefficient which requires no further 

correction due to mass flux effects. 

4. The flow is one dimensional. 

In view of assumptions 1 and 4, the fluidized bed can be treated by 

the method suggested by Bird et al. (76). 	A fluidized bed is a system 

in which the solid and liquid phases are continuous and exist side by 

side with the fluid flowing in the axial direction having a flat velocity 

profile and allowing -transfer of mass between the two phases. 	Admittedly, 

this is a bold assumption, but the final equation is the same when proper 

averaging is done (87). 

Fig. 4.3-1: 	Schematic representation of a fluidized bed. 

Solids 

Fluid 
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With the other assumptions mentioned above, a mass balance equation 

for a volume element for a component 'A' in'the fluid phase can now be 

written. 	Since the mass transfer between the two phases can be written 

in terms of a mass transfer coefficient it will be convenient to consider 

whether or riot the diffusivity of the component is constant. 	Here, the 

two cases are considered separately. 

1. 	For constant diffusivity, the mass transfer coefficient is a 

constant throughout the fluidized bed at a'given flow rate. A mass 

balance equation for this case, may be 'written for component 'A' as 

follows: 

aCAb 3(1-e) — 	acAb -e 	K 
c 
(C

Ab
-C
AR
) = U

s az at (4.3-1) 

It may be noted here that the transfer of component 'A' from the fluid 

to the solid phase is considered and thus the driving force is written 

(C
Ab 

- C
AR
) instead of (C

AR 
- 
CAb)' Also the mass transfer coefficient 

is given the subscript 'c' to denote that the diffusivity of the system 

is constant and hence the mass transfer coefficient depends only on the 

fluid mechanics. 	Here e is the voidage, t is the time, z is the 

axial coordinate and U
s 

the superficial velocity. 	Because of assump- 

tion 2, the solid-fluid equilibriuth interface concentration C
AR 
 may be 

taken as constant. 	For the following boundary conditions 

z = 0, C
A 

= C
Ab 

(4.3-2) z = h, CA = CAb 

t = ts
, z = h, C

A = CAb 

where CAb 	A 
and CAb  are the inlet and outlet bulk concentration of 'A', 

h is the bed height and i
s 

is the saturation time i.e. time when the par- 



70 

ticles. are completely loaded with species 'A' equation (4.1-1) has been 

integrated (62) to obtain the following expression for the mass transfer 

coefficient: 
US 	 C

Ab 
- C

AR
) 

t - h In s C
Ab 

- C
AR 

(4.3-3) 

3(1-c) 
 h (t - t

s
) 

Re 

 

For most systems of interest the variation of C
Ab 

with respect to time 

compared to space would be negligible when the first term in equation 

(4.1-1) may be dropped. The equation then reduces to a very simple 

ordinary differential equation. 	The expression for the mass transfer 

coefficient then is 

L 
In 

C
Ab 

- C
AR  

c 	S 	e — 

CAb CAR 

(4.3-4) 

where L = U
s
.A is the volume flow rate, A the cross sectional area 

of the tube and S - 3(1-e)hA  is the total surface area of the particles 

in the bed. 	Equation (4.3-4) may also be obtained as a limiting case 

of equation (4.3-3). 

The chemical system chosen for the experimental work has been dis- 

cussed earlier. 	The system chosen is 

RH
+ 

+ Na
+
OH -4- RNa

+ 
+ H2O 

which shows that an ion exchange particle in 1-1+  is treated with an 

NaOH solution. 	The H
+ 
 ions diffusing out of the particle phase will 

be immediately neutralized forming the solvent provided that the OH 

concentration in the solution exceeds 10
-7

M. 	This also means that Na
+ 

concentration at the liquid-particle interface is zero. 	Since the fluid 

phase has effectively one counter ion, i.e. the Na+  ions, equation 

(4-1-2) indicates that this system may be characterized by a diffusion 

• 
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coefficient which is constant. This system also has the advantage that 

the effluent concentration in a fluidized bed should remain constant for 

a given flow since the diffusion coefficient and the driving force re-

mains constant so that the total rate of mass transfer is constant. A 

neutralization ion exchange reaction thus offers a definite advantage 

ion, 

then 

other ion exchange reactions. 	If component 'A' is the Na
+ 
 lon, 

then C
NaR 

= 0 and equation (4.1-4) takes the simple form 

K 
L 
In 

Cl 
Nab 

CNab Nab 

(4.3-5) 

Equation (4.3-5) has been used to evaluate the mass transfer coefficient 

in this study. 	The expression for the concentration profile may be 

written as 

CNab 
 )i)z/h 

CNab 	Nab 

CNab 	
CNab 

(4.3-6) 

where C
Nab 

is the bulk concentration of Na
+ 

ions at a bed height z. 

2. 	In this case the diffusional flux may be of the form given by 

equation (4.1-5) in which case the flux is not represented by a constant 

diffusion coefficient. An example may be 

- 	- 
RH

+ 
+ Na

+ 
 Cl 	R Na + H

+
Cl 

Such cases have been studied by Snowdon and Turner (73). Following their 

method a mass balance can be written in terms of the equivalent fraction 

as 

9Y  Ytib 3( c) 	( 	 (4.3-7) - c C
Cb at 	

1- 	- 
v CCb YAb YAR) 	

r 
Us CCb az

Ab 
 

3YA 
	Ab For most practical cases of interest c at 	

<< U
s az 	

and the mass 

balance equation takes the simple form 
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aYAb _ - 3(1i-E)  K (YAb YAR) s az 

The boundary conditions are 

z = 0, 
YAb = YAb 

z 	h, YAb = YAb 

(4.3-8) 

(4.3-9) 

Here 
17.1.7 

is the mass transfer coefficient for the case where the dif- 

fusion coefficient is not constant. 	Single particle mass transfer study 

indicates that 17
NT 

depends on y
Ab 

and y
AR 

and hence integration of 

equation (4.3-8) is difficult. 	Snowdon and Turner (73) assumed that 

K
v 

could be taken as constant in equation (4.3-8) but when a comparison 

with single particle mass transfer'is to be made an average value of Y
Ab 

should.be used. 	Their study indicates that this approach is reasonable. 

Integration of equation (4.3-8) with the above boundary conditions gives 

K = L  In 
YAb YAR 	 (4.3-10) 
YAb YAR 

This equation is analogous to equation (4.3-4) where concentrations are 

used instead of equivalent fraction. 
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5. EXPERIMENTAL  

• 5.1. 	Experimental criteria 

For an accurate determination of the mass transfer coefficient in a 

fluidized bed using equation (4.3-5) an experiment must be designed 

which fulfils the assumptions made in obtaining this equation and in 

addition provides an accurate measurement of the variables. The impor- 

tant assumption is plug flow of liquid in the bed. 	This is most closely 

achieved by employing a shallow bed of particles since mixing of liquid 

would be small in such bed. Also the velocity profile of the fluid in 

.a fluidized bed has been shown theoretically to be almost flat by 

Taganov and Romankov (75). These authors considered the average equa-

tions of motion of the phases in a fluidized bed and presented approxi- 

mate solutions of the flow profiles of the two phases. 	Graphically the 

solutions for the average velocities are shown in Fig. 5.1-1. 

Fig. 5.1-1: 	Velocity profile of the phase in a fluidized 

bed 

Fluid velocity 
profile 

Solid velocity 
profile 

Fluidized bed 
wall 

The average fluid velocity profile may be considered roughly flat and the 

velocity of the solid phases corresponds to a circulating flow indicating 

perfect mixing of the solids. 	The averaged equations considered by these 
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authors 05) contain fluctuating components which are difficult to assess 

and various approximations have been employed *to obtain the solution. 

However, this can give a rough description of the fluid mechanics of a 

fluidized bed. 	Beek (6) points out that if the exchange between the 

two phases is fast, no departure from real plug flow can be detected, 

though this does not necessarily mean that actual plug flow is achieved. 

The neutralization reaction used in the present experiments satisfies 

this condition adequately. Perfect mixing of the solids is not an 

important consideration, since the solid-liquid equilibrium concentra-

tion of Na+  ions is essentially zero whether or not the solids are 

mobile. 

Equation (4.3-5) shows that the quantities to be measured are flow 

rate, the total surface area available for mass transfer and the inlet 

and outlet concentration of the Na+  ions in the stream. An analysis 

of error will indicate the quantities that require most careful measure-

ment. 

If 	Q = f(gi, g2, g3 
	 (5.1-1) 

then the differential change in Q corresponds to a differential change 

in each of the g's i.e., 

Df 	af dQ =
agl 

 dgi 
+(ag2 

 ) dg2 
+(g3) 

 dg3 + (5.172) 

If the differentials dgi, dg2, dg3  etc. are replaced by small finite 

increments Agl, Ogg, Aga etc. then AQ may be given to a reasonable 

approximation by the expression, 

af 	af 
kr/ =

Dgi Agl ag2 
Ag2 	5-2  Ag3 (5.1-3) 

where AQ and Ag's may be considered as the deviation of Q and g's 

from the mean value. 
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Hence for a population N 

2  2 EAQ 	V` 	. 	. 
Ti-d agi  agl 	agl  ag2 + -5T3  0g3 + 	(5.1-4) 

2 EAn 
Now by definition a = 	is the standard deviation of Q. 

When errors in the g's are independent 	E(Ag1.Ag2.Ag3  ..) becomes zero 

and equation (5.1-4) may be written as 

2 
6Q  = 	(7—  ) 

6$1 
+ g )2 

6$2 
+ Of  )2  02  

ogi 	gl 	3g2 	g2 	aga 	g3  • • • 

(5.1-5) 

The relative error in Q defined as n
Q 
 = a /Q then can be written as 

1 
ag1 g1 ag2 g2 sag3' -2 $3 

I/ f ) 2 (-- 	e22 	f 
) 
2 
 02 	, 

a  f ) 2 

(5.1-6) 

The subscripts of a and n indicate the quantities for which the stan- 

dard deviation and the relative error are evaluated. 	From equation 

(4.3-5) the relative error in mass transfer coefficient can be written 

with the help of equation (5.1-6) as 

2 	2 	1 	2 	n2 
c = + L + s  + 

Ci  2  ( Ci 	Ce  
In Na 	Na 	Na 

C
Na 

(5.1-7) 

It is easy to see from the above equation that the error in the mass - 

transfer coefficient depends naturally on the errors in the flow rate L, 

the surface area .S, the inlet and exit concentrations C
i 

and C
e 

Na 	Na 
i e 	i e 

respectively but additionally on the ratio CNa/C
Na' 	

If  C
Na

/C
Na 

< e 

then this ratio has an adverse effect on the error in the mass transfer 

coefficient and ice- 	In the present experiments C a/Clein  is 

TIQ 
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nearunityandhenceitisessentialthatn.and n 	be very 
C
Na 	C

Na 

small to have a reliable estimate of the mass transfer coefficient. For 

example, taking a typical set of values 

L = 20 ± .2 cm3/sec 

S = 400 ± 10 cm2  

N 
pi /re 
`'a"Na = 1.1 

nL 
= .01 

n = .025 

for 	n . 	= n,e 	.01, using equation (5.1-7) 
CNa 	`'Na 

n K — 	
= ± 4701)2 + (.025)2  2 x .0118 = ±.15 

G 

and for n . 	!= n= .001 
CNa 	

CNa Na 

11— K
c 

= ± 11 (.01)2  + (.025)2  + 2 x .000118 = ±.031 

Thus, if a relative error of not more than 5% is to be tolerated in 

the measured value of the mass transfer coefficient, then the concentra- , 
• 

..tion of the fluid stream must be measured to within 0.1% provided of 

course that the error in other quantities do not greatly exceed those 

cited in the example. 

The concentration range for the NaOH solution chosen for the work 

is between 10
-3 

to 10
-4 

(N). 	A low concentration (' 10-2 (N) or 

less) of the solution is needed to maintain a liquid film controlled mass 

transfer mechanism. 	Additional advantages of solution concentration are 

that the Nernst Planck equation (A.1-12), is valid in this dilute range 

and there is negligible effect of mass flux on the velocity profile and 

a relatively long time to particle saturation thus allowing a series of 



78 

experiments to be carried out easily. 

The next step in the design of the experiment is to select a tech- 

nique for the analysis of the solution. 	It was hoped to develop a con- 

tinuous analysis of the effluent stream since a batch method would be 

very tedious. 	Consideration of the various standard techniques, viz. 

titration, pH determination, photometric, radioactive and conductivity 

method indicates that the most suitable method of analysis would be the 

last one. However, the continuous measurement of concentration by a 

conductivity method to within 0.1% in a flow system poses many diffi-

cult problems, since the conductivity of an NaOH solution changes by 

about 1.71% per degree change in temperature. 	This would require 

that the temperature of the fluid stream be maintained constant at a 

desired value to within about ±0.02°C and a high sensitivity conduct-

ivity bridge preferably of the autobalance type be used for the measure-

ment. 

.5.2. 	General description of the design of the experiment  

The design of a flow loop capable of maintaining temperature to 

within ±.02°C is not easy. 	Indeed, a considerable amount of time and 

effort was devoted to achieving this and finally a relatively simple 

design was found to work. Most conductivity data is normally available 

at - 25°  and 30°C and so it was felt that the flow loop should be de-

signed for this range.of temperature. 

The general apparatus layout is shown in simplified form in Fig. 

5.2-1. 	Distilled water from a laboratory reservoir is pumped by a stain- 

less steel reciprocating pump [1] through a mixed bed deionizer [2] to 

polythene storage tanks [6] and solution tank [7]. 	Carbonate free con- 

centrated NaOH solution is transferred under a nitrogen atmosphere to 
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Fig. 5.2-1 : Simplified flow diagram of the fluidized bed equipment. 

19. Mercury thermometer 
20. Auxiliary heater 

21. Variac 23. Thermistor 
22. Fluidized bed 24. Needle conductivity probe 

25: Bridge 

2 
26. Trap 

Drain 



80 

the solution tank [7] to prepare about 45k 10-3  to 10 4  (N) NaOH solu- 

tion. 	Feed solution is then pumped by the stainless steel pump [10] 

through the rotameter [ll] and recirculated back to the feed solution 

tank through the heater [14] which is controlled by the phase angle con-

troller [17] designed to the required sensitivity, a flow conductivity 

cell [18] and a thermometer [19]. After about 15 to 20 minutes, when 

the temperature of the fluid at the. heater outlet shows a predetermined 

value; the flow at that point is divided into two streams. One flows 

through the fluidized bed [22] via a small heater [20], a needle conduc-

tivity cell [24], flow monitoring stainless steel rotameters [12] fitted 

with fine stainless steel needle valves [13] to either effluent tank 

[8] Dr the drain. The other stream is recirculated as before. 	Tem- 

perature sensing devices [16,19,23] are located at suitable points. 

The flow line is of PVC tubing. 

5.2.1. 	Temperature control: It is not very practicable to maintain 

the entire flow loop at a constant temperature to within ±.026C. It will 

suffice if the temperature of the fluid at the point where the conduct-

ivity is to be measured is maintained at the desired temperature level 

to within ±.020C. 	The recirculating loop mentioned above forms the 

crucial part of the temperature control unit. 	In the main, it consists 

of an all glass construction shell and tube type heater [14] through 

which the fluid circulates. 	The heater is 18" x 3" and has twelve 

1/8" dia glass tubes located axially. 	In each tube is placed a coiled 

nicrome resistance heating element [15] with a heat resistant fibre 

sleeve on each heating coil to ensure a smooth fitting with the glass 

tube. 	The resistance elements are suitably connected to give a maximum 

heat output of about 750 watts and the voltage across the heating ele- 

ments is controlled by the phase angle controller [17]. 	The fluid flows 

through the shell side of the heater and the temperature at the outlet is 
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sensed by a platinum resistance thermometer [16] which is fed back to 

the temperature controller. The controller in turn controls the 

applied voltage across the heating elements. 

Initially,. the temperature controller is set to a desired value and 

the flow recirculated through the heat exchanger and back to the feed 

solution tank until steady state exit temperature of the fluid at about 

0.1°C above 25
o 

or 30°C depending on the temperature at which the 

experimental run is to be carried out. A mercury in glass thermometer 

[19] graduated to 0.1°C located at the exit of the exchanger, is used 

for the visual indication of the temperature. 	In addition a flow con- 

ductivity cell [18] is provided at the exchanger outlet. A steady con-

ductivity reading ensures that both temperature and concentration of the 

fluid is uniform. 

After a steady state condition is achieved, the flow is divided into 

two streams and one of them is directed to the fluidized bed and the 

other recirculated as before. 	The flow rate of these two streams may 

be varied but their sum kept constant by adjusting of valves. 	This 

allows a constant flow rate through the heater which can be checked by 

'the rotameter [11],sbut allows the flow through the fluidized bed to be 

varied. 	In the present experiments a maximum flow of about 3.4 2./min 

was possible, this being the maximum capacity of the rotameters [12] used 

for flow control in the fluidized bed. 	The flow rate through the heater 

was about 4 2/min for all experiments. A constant flow through the 

heater avoids any abrupt transients in the system when the flow in the 

fluidized bed is altered. 	Also, the location of the platinum resist- 

ance thermometer [16] just at the exit of the heater reduces the sensing 

lag and minimises the correction of the temperature of the fluid. 

As the stream passes through the fluidized bed the temperature drops 

below that attained at the outlet of the heater. 	This drop in temperature 
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will depend on the flow rate, the length of the flow line and the tempera-

ture of the environment. To attain the desired temperature at the point 

where effluent conductivity is measured, some further heating of the stream 

may be required. 	For this a small auxiliary heater [20] about 5 watt 

in capacity is installed in the feed line to the inlet of the fluidized 

bed and heavily lagged. The auxiliary heater [20] consists of a glass 

tube forming part of the feed line with a resistance wire wound around it. 

The applied voltage across this heater is manually controlled by a variac 

[21]. The temperature of the effluent stream is measured by a calibrated 

thermistor above the fluidized bed at a point close to the conductivity 

probe. 	The thermistor is calibrated to within 0.01°C against a mer- 

cury'in glass thermometer graduated at .01°C intervals. 	The resistance 

of the thermistor is measured using the same bridge used for conductivity 

measurement. The controller and the auxiliary heater are adjusted so 

that the fluid temperature above the bed is 25 or 30°C at which all 

but one set of runswas carried out. 	With the present equipment it is 

possible to achieve a control of temperature to within ±.02°C or better. 

The only drawback is that every time the flow in the fluidized bed is 

varied, the auxiliary heater setting requires adjustment and this may re-

quire several minutes before a new steady state condition is reached. 

The temperature controller is set such that the thermistor reading corres-

ponds to a value of 25°C or 30°C for a maximum flow rate through the 

bed with zero auxiliary heater output. 	The fluidized bed is surrounded 

on all sides by a curtain of polythene sheet to maintain a roughly con-

stant condition of the immediate environment. 

5.2.2. 	Construction of the fluidized bed: 	The fluidized bed is made of 

multiple push-fit sections of perspex to facilitate easy dismantling and 

fitting of the column. 	The middle sections are manufactured from a 3 in. 
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dia perspex rod and the two end sections from 6 in. square perspex block 

which are drilled to give an inside bed diameter of 2 in. The distribu-

tor is made of an 1/8" thick sintered polythene disc (5 pm porosity). 

The pressure drop through the sinter is much higher than the bed ensuring 

uniform fluidization. 	It was found that two such discs fitted with a 

narrow ring of polythene sheet between them gave the best result as in-

dicated by visual observation. The polythene ring is placed such that 

the sintered discs have a 2 in. dia uncovered area at the centre. 	The 
• 

sintered discs rest on a step cut in the column and are held in place by 

a thick flexible rubber sleeve made into a circle which in turn rests in 

a groove cut in the wall of the column and is similar in design to a 

circlip. This flexible rubber piece and the polythene ring avoid any 

leakage through the side of the distributor. 	The column is shown in 

figure 5.2-2. 	To help in obtaining a flat velocity profile the test 

section is preceded by a 6 in. long fixed bed column of glass particles 

of mixed size range and to reduce end effects the test section is followed 

by a 3 in. long similar fixed bed. 	The fixed beds are supported on 

single polythene sinters. 	Suitable arrangements have been provided in 

various sections for the introduction of temperature and conductivity 

probes. 	The various sections are held together by means of brass 

studding bolted from the two ends with PTFE gaskets placed between the 

sections to prevent leakage. 

5.2.3. 	Precautions:. Since NaOH solution is used, it is important that 

the solution does not come into contact with air so as to avoid the ab-

sorption of atmospheric CO2 
thereby altering the equilibria of the 

system and conductivity of the solution. 	For this reason the storage 

and solution vessels are kept under a nitrogen atmosphere by slowly 

bubbling nitrogen from a nitrogen cylinder [3], this being indicated by 

the nitrogen bubbles escaping in the trap [26]. 	No degassing of solu- 
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tion was- necessary. 	To prevent any blocking of the distributor plate, 

which will cause an uneven flow, the deionized water supply line is pro-

vided with a filter [5] having a porosity much finer than the porosity 

of the bed support. 

5.2.4. Measurement of the conductivity of the solution: 	The conduct- 

ivity of the effluent was determined by a needle conductivity probe and 

measured by a Wayne Kerr autobalance bridge [25] having a sensitivity 

of 0.1%. 	The needle probe [24] is 1 in. long and 1/8 in. dia and is 

placed in a "T" junction. 	It was observed that if the probe was 

disturbed the cell constant changed slightly. However, this was avoided 

by rigid fixing. The conductivity of the feed solution was determined 

using the flow conductivity cell [18] or by the needle probe [24]. 	If 

the latter is used the flow path must be altered such that -the feed solu-

tion passes through the needle probe [24] and then through the bed in 

down flow and then to the drain. Every time an experiment was carried 

out, the cell constant of the needle probe was checked against the flow 

cell [18] since the cell constant of the latter remained constant. 	Con- 

centration data can then be obtained from calibration curves. 

5.2.5. 	Determination of particle diameter, surface and voidage: 

The ion exchange resin particles used in the experiments were commercially - 

available cation heads (Zeo-Karb 225) having a DVB crosslinking of 8 

and 20%. 	It is desirable to obtain a narrow size range to avoid segre- 

gation of particles during fluidization and to determine the mean dia- 

meter of particles accurately. 	Dry sieving of resin particles must be 

avoided since on subsequent wetting the particles tend to crack. 	Wet 

sieving was therefore used and repeated sieving was necessary to obtain 

a closely graded sample. 	The average diameter of the resin beads was 

determined by Measuring a few hundred beads from each sample using a cali- . 
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brated microscope. 	It is necessary that the diameter be known when the 

particles are fully swollen since even partial drying may result in 

shrinkage. For example, the difference between the diameter of a fully 

swollen and an air dried resin in the 11+  form may be as high as 

15%. 	The particles were located on a glass plate of suitable design 

and submerged in water for examination under a microscope. A typical 

size distribution is shown in Fig. A.6-1. 	Since the average diameter 

of the entire population was not known, a "t" test was made. The 

average diameter of the entire population was determined to better than 

2% for a 95% confidence limit. 

It is also known that the diameter of the particles changes as the 

resin is converted from hydrogen to sodium form. The change in dia- 

meter with loading is shown in Fig. A.6-2. 	It may be seen from the 

figure that the maximum change is less than 3% for the 8% cross- 

linked and 1.5% for the 20% crosslinked resin. 	In mass transfer 

calculations an average diameter between the two limits was used. How-

ever, at no time during a run were the particles completely converted 

from one form to another. 

The precise determination of the surface area of the particles making 

up a shallow bed is difficult. 	A displacement technique is not suitable 

since the weight of fully swollen particles is required in this method and 

this is not easily obtained. 	The surface area can be determined if the 

settled volume of particles and the voidage are known. 	Since a small 

volume of resin particles were used, this method is also difficult. 

Measurement in a narrow cylinder gives an accurate settled bed height, 

but not an accurate voidage, since the wall effect would be high. 	A 

large diameter column is more satisfactory, but this requires precise 

bed height measurement. 	Further, the bed voidage is not usually known 

thougli reasonable estimation is possible. 	In the present case a more 
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direct but much more laborious method has been employed. 	In this method 

the resin particles were carefully removed from the bed after carrying 

out the mass transfer experiments and transferred to several sintered 

glass-bottomed tubes and centrifuged till a constant weight of the samples 

was recorded. 	Then the resin particles were transferred to a large petri 

dish and left for several hours and weighed. 	Several thousand beads were 

then counted from the total population and weighed. From this weight 

and the weight of the total population, the total number of beads and 

hence the total volume when fully swollen was calculated. 

Bed voidage was determined from a knowledge of the absolute resin 

volume and the expanded bed height. 	Bed height was determined at a 

given flow using a cathetometer. The constancy of the flow was checked 

by direct measurement at least twice during a run. 

5.2.6. 	Determination of viscosity and diffusivity data: 	The viscosity 

of the solution is taken as that of water, since at 10-3  to 10-4  (N) 

concentration of NaOH the difference in viscosity is negligible. 	The 

ionic diffusivities were calculated using the Nernst-Einstein relation: 

T 
Dis 	

Ru 
- --r— where u is the mobility of the ion solvent pair, T the 

temperature and R the gas constant and F the Faraday constant. 	The 

mobility data has been obtained from reference (16). 	The Nernst-- 

Einstein equation is valid for the limiting case of zero concentration 

and hence appropriate correction was made to obtain corrected values of 

diffusion coefficient. 	However, any correction in the range of concen- 

tration 10
-3 

to 10
-4 

(N) is small as may be seen from the Schmidt num-

bers in tables listed in Appendix A.5. 
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5.3. Measurement of axial concentration in the fluidized bed 

The axial concentration in the bed was determined in order to check 

the assumption of plug flow of liquid in the bed.. This was done by 

withdrawing samples of solution by means of hypodermic needles. To 

achieve this, several small holes were drilled into the wall of the 

fluidized bed and closed by small silicone rubber bungs. Care was taken 

not to project the bungs into the interior of the fluidized bed and the 

holes were sealed by a soft resin so that a smooth surface was maintained 

within the bed by wiping away the surplus resin with tissue paper soaked 

in carbon tetrachloride. Thin hypodermic needles were then pushed into 

the bungs so that the end of the, needles nearly crossed the thickness of 

the wall. 	The other push fit units were then assembled and the run 

started. After steady state was achieved, a needle was pushed right 

into the bUlk of the stream and a sample was withdrawn into the syringe. 

It was necessary for the sample to be withdrawn very slowly so that dis-

turbance of the bed was as small as possible. After each sample was 

collected in the syringe, the needle was withdrawn to the original posi- 

tion and the syringe removed for the analysis of the solution. 	In this 

way several samples were collected from different axial positions. 	The 

position of the probes was determined by carefully locating the projected 

needle in the bed by a cathotometer. 	The samples were analysed fof 

Na content by an EEL flame photometer in view of the lack of a suit- 

able constant temperature bath. 	The maximum full scale reading with 

this instrument as quoted by the manufacturer is 5 ppm Na}  and hence 

dilution of the samples was necessary for the analysis. 
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5.4. 	Single particle mass transfer experiments  

In order to obtain a better understanding of the multiparticle mass 

transfer results some single particle experiments were carried out using 

the same physico-chemical system. The experiments were carried out by 

allowing single resin particles to fall in a tall column filled with 

dilute NaOH solution. A schematic diagram of the equipment is shown 

in Fig. 5.4-1. 	The equipment consists of a 2 in. dia 5 feet long glass 

column [1] fitted with a suitable valve arrangement for washing and col-

lecting of the particle and feed solution and deionized water tank with 

associated pumps and tubings. 	The most important unit in this equipment 

is the two way valve [2] with a,sweep elbow type passage in the stopper. 

This valve, designated valve 1, separates the solution column from the 

wash unit. 	It serves to feed the solution to the column, is the exit 

end of the washing section [4] and initial collection chamber for the 

particle. The other two way valve [3] with a tee type passage in the 

stopper, designated as valve 2, is used to feed deionized water into the 

washing section. 

The column is fitted with an easily removable end [5], and is filled 

with dilute NaOH solution of known concentration through valve 1. 

After filling the outlet end is removed and a rubber bung placed at the 

column end to avoid any contact of the solution with the atmosphere. 

Deionized water is then introduced into the washing section through valve 

2 and expelled through valve 1, and bottom of the fritted end column, so 

that the entire wash unit including the passage of the stopper of valve 1 

is thoroughly washed and contains deionized water only. A needle con-

ductivity probe [6] is located just below the valve 1 to detect any 

possible contamination of the deionized water with feed solution from the 

solution column. 
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Fig. 5.4-1 : Flow diagram for single particle mass transfer study. 

1. Glass column 
2. Valve 1 
3. Valve 2 
4. Wash unit 
5. Easy removable end 
6;  Conductivity probe 
7. Fiitted end column 
8. DMW tank 
9. Solution tank 
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Drain 
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A resin particle is converted to H form by passing a large excess 

of acid and thoroughly washed with water is then selected and its dia- 

meter measured with a calibrated microscope. 	The particle is then taken 

on the thin tapered end of a glass rod; the adhering moisture in the 

particle is sufficient for sticking. 	The rubber bung at the top end of 

the solution column is removed and the glass rod with the particle is 

just dipped into the solution of the column. 	The dipping of the rod is 

done very carefully, the object being to drop the particle into the solu- 

tion. 	Almost immediately the particle reaches its terminal velocity and 

falls steadily in the column. 	When the particle is almost at the bottom 

,end, valve 1 is adjusted so that the particle drops into the passage of 

• the stopper of the valve which is filled with deionized water and the 

stopper immediately rotated so that the particle falls into a pool of 

deionizedyater and finally settles in the fritted end glasscolumn. The 

particle is now given another thorough wash before the fritted end column 

is separated for the removal of the particle for analysis. 	The tempera- 

ture of the solution and the time of fall of the particle in the glass 

column is noted. 

The mass transfer coefficient can be calculated from a mass balance 

on the particle: A mass balance gives 

d 	1  
dt 'vR -Na' 

= 47R 	(C 
Nab 

 - C
NaR
) (5.4-1) 

where v
R
' is the volume of the particle, CNa  the solid phase concentra- 

tion of Na. 	Since 
CNab' 

the bulk solution concentration is constant 

and C
NaR 

= 0 

r  Na 	 f  tf 

dt d 7Na  = 47R2 17c CNab 



Or, 	 W 	= 41.R2 Kc C
Nab  tf 
	 (5.4-2) 

where W
Na 

is the total amount of Na in the particle and t
f' 

the 

time of fall of the particle in the column. 	Thus, the total amount of 

Na
+ 

transferred to the particle must be estimated in order to determine 

the mass transfer coefficient. 

The estimation of the amount of sodium in a small resin bead is 

difficult. 	The amount of sodium in a bead is about 10-7 to 10
-8 

gm. 

Wet chemical methods are not attractive because of the low concentration 

and also because a suitable solvent cannot be found to dissolve the par- 

ticle easily. 	Radioactivation analysis is attractive, but the prepara- 

tion of standards is not easy. 	For these reasons, a spectro chemical 

method was used. A straightforward standard technique was employed for 

this, the details of which are given in Appendix 4. 
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6. RESULTS AND DISCUSSIONS 

6.1. 	Fluidized bed  

The following relationship is assumed valid in a multiparticle bed 

Sh
m 

= 4)1(Re
s
, e, Sc) 
	

(6.1-1) 

In the above equation the voidage e is included as an approximate method 

of accounting for the effect of other neighbouring particles on mass and 

heat transfer. 	Voidage alone, does not describe the entire structure of 

a particulate assembly. 	For example, it is possible for an assembly of 

particles to have the same voidage and yet a completely different arrange-

ment of particles. However, if the structure of the bed is the same 

over the entire range of voidage then the above equation would be a good 

representation for a multiparticle assembly. 

For a fluidized bed, a further relationship is valid, assuming 

negligible wall effects (64), 

= .2(Res, Red 
	

(6.1-2) 

where Re
o 

is the terminal settling Reynolds number. 	Equation (6.1-1) 

may then be written as 

Sh
m 

= (1)3(Re 
s 
 , Reo, Sc) 	(6.1-3) 

The terminal Reynolds number Re
o 

is a characteristic property of a fluid-

particle system and is a precise parameter in correlating mass and heat 

transfer results in a fluidized bed. 	It is noteworthy that Reo charact- 

erises bed expansion (see equation (6.1-2)) and it has been successfully 

used to correlate mixing data in liquid fluidized beds. 

Again, on the basis of single particle work, one may assume that, 

Sh = B Reg  Sc1/ 3  
m m s 

(6.1-4) 



in  
Re Sell 3  s  

Sh
m  

= 	
a  

B Re' ' Reg-1  0 o (6.1-9) 
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Equation (6.1-4) is similar in form to equation (2.2-17). 	Examination 

of equation (6.1-3) indicates that the coefficient Bm  and exponent q 

may depend on Reo. 	It is further assumed that equation (6.1-4) holds 

good for the entire range of voidage including a value of unity corres- 

ponding to a single particle in an infinite medium. 	Thus, 

Shm I 	= B Regl 	Sc1/ 3  m s 
e.+1 	E41 

or 	Sh
o = B Reg  Sc1/ 3  m o (6.1-5) 

Now Sh
m 	

4 Sh
o
, where Sh

o is the value of the Sherwood number at 
c41 

unit voidage and hence corresponds to the case of single particle falling 

at the terminal Reynolds number so• that similarly Re
s 	Re

o
. 

c41 
For a single particle settling at the terminal Reynolds number one can 

write from equation (2.2-17), 

Sh
o 

= Bo 
	o  
Re1/2 Sc113 	 (6.1-6) 

where the coefficient B
o is expected to be a constant over a limited 

range of Reo. 	Equating (6.1-5) and (6.1-6), 

B
m 
 = B Re' ' 

o o 

and using this relationship in equation (6.1-4), 

112 ( Re 
Sh = B

o 
Re
o 	-Res 

 

-; 	
Sc113 

The conventional jm  factor can be written as 

(6.1-7) 

(6.1-8) 

Thus, the important quantity to be determined is q since at least some 
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idea of -B
o 

may be obtained from a single particle study. However, it 

would be better to determine the value of B
o 

from fluidized bed data 

and compare this with the value obtained from single particle studies, 

since a number of assumptions have to be made to obtain the value of B
o 

from fluidized bed data. 

The jm  factors against Res  plots for a range of Reo  are shown 

in Figs. 6.1-1 to 6.1-6 and the data is tabulated in Appendix A.5. 

Visual examination of the data in these Figures indicates that the experi-

mental data in the higher range of Re' can be readily correlated by a 

single straight line on logarithmic coordinates. 	Extrapolation of the 

correlating lines to low values of Re
s shows that the experimental data 

• falls well below and suggests a lowering of mass transfer. 	From the 

Figures it may be seen that this deviation occurs for data lying below 

about Res/Re
o < 1/6 or at a voidage below about 0.55 though this 

choice is somewhat arbitrary. 	The correlating lines (shown as the solid 

lines) in the Figures include only those data for which the open symbols 

are shown and usually these points lie above Res/Reo  > 1/6 and the closed 

symbols lying below this value are not included in correlating experimental 

data. 	From the slope of these curves, which is (1-q), q can be 

obtained. 	The-values of q are plotted against Re
o 

(open symbols) 
•

in Fig. 6.1-9 using logarithmic coordinates and tabulated in Table A.5-13. - 

A correlation, q = 0.5 Re
o
0.3 

 , can be written as a convenient equa- 

tion, the least square fit being q = 0.495 Reo
0.307 	

It may be seen 

from Fig. 6.1-9 that when the entire data including the low Res  range is 

used to obtain the values of q no suitable correlation between q and 

Re
o 

can be obtained. 	These points are shown as closed symbols in Fig. 

6.1-9. 

The deviation of the data at low voidage may also be seen in the work 

of Chu et al. .(11) and Conderc et al. (14) shown in Fig. 6.1-7 and 6.1-8. 
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The latter authors' data shows this quite clearly. 	It is possible that 

j
m 

does change smoothly with Re
s 

over the entire range, i.e. a smooth 

curve can be drawn in some cases, especially in Figs. 6.1-2a, 2b. 	How- 

ever, all the data except in Fig. 6.1-1 have been correlated by a straight 

line in the range Res/Reo  > 1/6. 	In Fig. 6.1-1 data has been correlated 

for Re 
s 
 /Re

o 
 > 1/7.5, but as mentioned earlier this choice is somewhat 

arbitrary and almost the same correlation could be obtained in this case 

also for data points at Res/Reo  > 1/6. 

The reason for a difference in the mass transfer behaviour at lower 

voidage, i.e. voidage corresponding to Re 
s 
 /Re

o 
 = 1/6 which is about 0.55 

for the present cases, may be explained by the fact that at low voidage, 

a flUidized bed tends to maintain an ordered arrangement in which indi-

vidual particles are arranged in lines parallel to the main flow compared 

to the random arrangement at higher voidage. This ordered arrangement 

at low voidage effectively shields part of the particle surface to flow, 

with the result of a decrease in mass transfer. 	The existence of an 

ordered structure in a fluidized bed is known and has been clearly demon- 

strated by Gunn and Malik (33). 	These authors measured the drag coeffi- 

cient for different arrangements of spheres and compared the results with 

those obtained in a fluidized bed over the entire range of voidage for a 

large range of flow. 	They found that at low voidage, the fluidized bed 

could be closely identified to an ordered arrangement in which the particles 

were orientated in lines parallel to the main flow. 	This string-like 

arrangement would partially shield the particles explaining a lowering of 

the drag coefficient in a fluidized bed. 	Classical work of Rowe et al. 

(66) on drag measurements and that of Peltzman and Pfeffer (59) on mass 

transfer shows that an axial arrangement would lower drag and mass trans- 

fer coefficients. 	The latter authors referred to this as the "area 

blockage effect". 	As the voidage of the bed increases, the corresponding 
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Reynolds number increases and the ordered structure of the bed tends to 

disappear. 	This is due to inherent perturbations originating in the 

fluid itself. 	The progression in disorder is probably due to increased 

inertial forces and increasing turbulence, the strength of which would 

grow with increase in the Reynolds number. 	Gunn and Malik (33) concluded 

that at a Re
s 

of 0.1 and 10 the corresponding voidages at which a 

random structure would exist would be above about 0.9 and 0.8. At a 

Re
s 

of about 103, there would be little trace of any ordered structure 

in a fluidized bed. 	In this work, the mass transfer results at a void- 

age above about 0.55 are well correlated suggesting a uniformity in 

structure. 	Since the experimental data fall below the correlating lines 

for voidages below about 0.55 it could be argued that this reduction is 

due to an "area blockage" effect because of a string-like arrangement of 

particles. 	Above this voidage or Re 
s 
 /Re

o 
 > 1/6 the particles are ran- 

domly oriented and an increase of mass transfer occurs. 	In this study 

it is difficult to know exactly where the transition from order to dis-

order occurs due to a lack of data at sufficiently close intervals. 

Also, of course, mass transfer rates are less sensitive to geometric 

arrangements than are drag measurements. For example, in an axial 

arrangement of two spheres, no observable difference in mass transfer may 

be noticed when the spheres are 2 to 3 diameters apart. An effect 

would be observed in drag coefficient measurements even if the spheres 

were about 9 diameters part. 	However, the present mass transfer re- 

sults give an indication that at low voidage there is a tendency to form an 

ordered arrangement of particles which is being destroyed as the voidage 

increases due to increased flow perturbations which disturb' the fine 

balance of forces needed to maintain an ordered structure. 	This possibly 

justifies the neglect of data in the lower voidage range in obtaining a 

suitable correlation, since the task would otherwise be difficult. 	It 
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therefore appears that voidage effects can be used to account for the 

effect of other particles at Res/Reo  > 1/6, thus justifying the use of 

equation (6.1-1) in a fluidized bed. 

The values of Bo 
for different Re

o 
obtained from fluidized bed 

experiments are tabulated in Table A.5-8. 	It is seen from the table 

that the value of B
o 

is almost constant except for Re
o 

= 20.09 and an 

average value of 0.857 is taken. The one exception when Bo  = 0.742 

-is possibly due to an error in the determination of the volume of particles 

in the bed. This point can be checked if reliable bed expansion data 

_are available. The bed expansion characteristics are shown in Fig. 

6.1-10 and compared with the Richardson-Zaki correlation (64) in Fig. 

6.1-11. 	The Richardson-Zaki: correlation is 

Re 
Reo  

N 
(6.1-10) 

d3P0s  N is plotted against Reo  or equivalent Ga where Ga - 	and 
112 

compared with the experimental values which are obtained by correlating 

observed voidage data shown in Fig. 6.1-10. Again, in this correlation 

the lower voidage range data is neglected. 	Comparison of the predicted 

and calculated values of N shows that the bed expansion data is not very 

reliable. This is thought to be due to the small bed volume used in the 

experiments which makes bed height measurements difficult because of the 

uneven surface of the fluidized particles. 	Furtheri the cathetometer 

used to determine the bed height did not have good resolving power making 

focusing of the instrument difficult. Thus the value Bo 
= 0.742 for 

Reo = 20.09 is not reliable. 
	However, this is not serious, since the 

value of Bo 
 is reasonably. constant for all other Reo 

and the volume 

of the bed does not effect the value of q as this depends on the ratio 

. 
where N = 4.45 Reo 

-0 1 for 1 < Re
o 

< 500. 	In Fig. 6.1-11 the value of 

of inlet to outlet .concentration of the fluid stream. 	Thus the correla- 
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Fig. 6.1-11a : N against Reo  
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Fig. 6.1-11 : Axial concentration profile 
in a fluidized bed 
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• 

tion suggested for a liquid fluidized bed is; 

where 

Re )q  
Shm  = 0.86 Re1/2 	s 	Sc1/3  0 Re 

 

= 0.5 Re-.3  
0 
° 

The reliability of experimental data may be seen from the j
m 

against Res  plots which are plotted on appreciably expanded logarith- 

mic coordinates. 	Also, the two sets of experiments shown in Fig. 6.1-2a,b 

are almost identical in every respect except for a slight difference in 

the volume of particles and were conducted at two different times (more 

than 3 months apart). 	The effect of bed height on mass transfer may be 

seen from Table A.5-5 for which case the experiments were carried out 

with the bed volume nearly doubled. The value of B
o 

and q for this 

case agree well with other data. 

Two axial concentration profile measurements are shown in Fig. 6.1-11, 

which are in agreement with the predicted profile as given by equation 

(4.3-6). 	The profiles seem almost linear. 	This is because the ratio 

of inlet to outlet concentration is close to unity. 	However, the data 

are too few to check the reliability of the measurement. 

The value of Bo 
= 0.86 obtained here from fluidized bed data is 

within the range of values reported for single particle work which has 

been reviewed in Chapter 2. Note that the symbol B is used in single 

particle correlations. 	The theoretical solutions of Ihme et al. (39) 

and Al-Taha (3) are shown in Fig. 6.1-12. 	It appears that the former 

authors predict a value of B about 0.85 whereas the latter author pre-

dicts a value of B = 0.6 for Re greater than about 50 to 100. 

The latter study also indicates that for the lower range of Re a corre-

lation of the form suggested in equation (6.1-6) is not suitable, but if 
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a correlation of this type is sought then B would lie between 0.6 

and 0.85. Al-Taha's (3) work is possibly more correct since it pre-

dicts a value of about 0.6 for B at a high Reynolds number which is 

in good agreement with boundary layer theory. Experimentally little 

data is available in this low range of Re. 	For 25 < Re < 56, Chen's 

(10) benzoic acid solid data and Clinton and Whatley's (12) liquid drop 

data in the range 5 < Re < 14 may be corrected using values of B as 

0.85 and 0.82 respectively. 	However Calderbank and Korchinsks' (8) 

result for heat transfer to mercury drops at 20 < Re < 200 can be cor- 

related with a value of B = 0.75. 	Also Rowe et al. (67) report a 

value of B = 0.74 for mass and heat transfer studies in the range 

20 < Re < 2000. 	It is possible that Chen (10) and Clinton and Whatley's 

(12) values of B are slightly higher. 	Chen (10) does not report 

whether he used cast or pressed benzoic acid spheres but it is most 

likely that he used cast spheres since Chen used the same equipment and 

methods as reported by Peltzman and Pfeffer (59). 	The latter authors 

reported that the use of cast benzoic acid spheres would cause grain 

dropping and that this apparently increases the physical mass transfer 

rate due to greater chemical activity of the disordered grain boundaries 

when compared to the ordered structure of the bulk grain. 	This random 

structure of the grain boundaries arises as the crystalline organic 

material solidifies in a manner quite analogous to metals. 	Rowe et al. (67), 

on the other hand, used pressed benzoic acid spheres in their mass 

transfer experiments which would eliminate any grain dropping phenomenon. 

The difference in the two liquid drop studies is difficult to explain 

except to mention that Clinton and Whatley (12), like Calderbank and 

Korchnisk (8),did not check experimentally if the drops were behaving as 

true solid spheres, but only assumed so by adding a surfactant, and from 

the evidence that drops without surfactant had a high initial rate of mass 

transfer. 
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Because of the uncertainty as to the correct value of B or B
o 

for Re < 100 some single particle experiments were carried out in this 

lower range of Re. 	It was felt that the effect of sphere support and 

turbulence, could have contributed to the disagreement in other experi-

mental work, though only to a limited degree. To eliminate these 

effects, the mass transfer experiments were carried out allowing single 

particles to fall at their terminal settling velocity. 	The results are 

shown as j factors against Reo  plotted on a logarithmic coordinate 

in Fig. 6.1-12. 	The data lies between the two theoretical predictions 

but unfortunately, there is some scatter in the data. A mean value of 

0.75 for B is suggested. 	Thus the single particle mass transfer 

dati. for 7 < Re
o 

< 95 can be expressed by the following equation. 

Sh
o 

= 0.75 Ref/2  Sc1/3  
0 (6.1-12) 

The explanation of the scatter in the single particle mass transfer 

results is probably analytical. 	It is difficult to obtain uniformity 

in the preparation of the various sample and standard matrices for the 

spectro-chemical analysis. 	In the analysis, it has been assumed that 

sodium was present in a matrix of CuSO
4 

which formed the major consti-

tuent and that the particle was inert as far as the analysis was con- 

cerned. 	However, this was not so in practice, since in the unknown 

samples, sodium was present in the particles and in the comparative stan-

dards sodium was present as adsorbed Na
2
SO
4 

in CuSO
4 

powder and there-

fore the arcing characteristics of the samples and standards were not 

necessarily the same. 	In addition the size of the samples and standards 

were not the same since the particles were of various sizes and the exact 

amount of CuSO
4 

could not always be added for the different determina-

tions due to the error in weighing such small amounts. 
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An explanation is now required to account for the difference in the 

value of Bo 
(0.86) obtained by extrapolating fluidized bed data and 

the value (0.75) obtained in single particle work, since intuitively 

they should be the same. It is possible that the value of Bo  obtained 

from fluidized bed data is increased due to turbulence. 

Galloway and Sage (23,24) have reviewed the available information 

concerning the effect of free stream turbulence on mass and heat transfer 

rates from single spheres. 	It is known that the intensity of the free 

stream turbulence markedly influences the transfer rates in the forward 
• 

region of a sphere. 	The above authors found that this effect could be 

conveniently represented by the use of a Frossling number, defined as 

S  
Fs = 	

h - 2  

Re1/2  Sc1/3  
(6.1-13) 

Galloway and Sage (23,24) suggested that the local and overall Frossling 

numbers are linearly related to the square root of the Reynolds number 

and that the slope increases with increasing turbulence. 	Based on 

theoretical considerations and experimental data, they suggested an empiri-

cal representation of the Frossling number which would take into account 

the effect of turbulence in the boundary layer and in the wake and addi-

tionally the variation of physical-properties through the boundary layer. 

For negligible variation of physical properties of the fluid through the 

boundary layer and negligible effect of turbulence on the wake transfer, 

i.e. for the effect of free stream turbulence on the laminar boundary 

layer they suggest the following equation for the Frossling number: 

Fs = E1  + E2c0 (a, 	E3) Re1/2sc1/6 	(6.1-4) 

where E1, E2  and E3  are constants and a' the intensity of turbu- 

lence defined as 	U where Tit  is the time averaged longitudinal 

fluctuating velocity. 
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From the analysis of 436 data points for mass transfer these authors 

recommend the following values: 

E1 = 0.55 

E2 = 0.1 

E3 = 0.0004 

Galloway and Sage (24), in the analysis of data covered a range 2 < Re < 

483,000 but most of the data was for Re > 100. 	For a' = 0, Fs = 

E1 = 0.55 i.e. the value of B1 of equation (2.2-1) suggested by Fross- 

ling (21). 	In other words Galloway and Sage recommend equation (2.2-1) 

for correlating mass transfer data for single spheres. 	It has been dis- 

cussed earlier that a more appropriate correlation for single particles 

would be equation (2.2-17). 	For Re less than 100 a value of Bo  = B 

= 0.75 is recommended for use in equation (2.2-17) as a result of this 

work. 	The term B should have the same significance as that of the term 

E1 in equation (6.1-14) and therefore the following values of the con-

stants have been chosen: 

El = 0.75 

E2 = 0.1' 

E3 = 0.0004 

This assumes that the magnitude of E2 and E3 remains of the same order 

for Re < 100. 	Recognising that the value of the Frossling number is 

approximately equal to the value of Bo  obtained from fluidized bed work 

one obtains (equation (6.1-14)) 

0.86 = 0.75 + E2a' (a 	E3) Re1/2 Sc116 

= 0.75 + 0.1 a'2  Rel./ 2  Sc116  o 

since 	E3 = '0.0004 = 0 

Taking a set of values, i.e. Reo = 50, Sc = 400 we have 
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0.11 
a' = 	- 0.24 

0.1 X7.lX  2.72 

The origin of "turbulence" may be attributed to several factors. As 

flow proceeds in a multiparticle bed, the flow may be divided into several 

streams which may recombine later depending on the presence of neighbour-

ing particles so that the flow consists of a sequence of "jets" and "wakes". 

This process of jet division, recombination with associated mixing in the 

wakes as a result of "side stepping" can give rise to a form of turbulence. 

The "intensity" of such turbulence is related to the mixing length of the 

process and is intimately related to the mean flow, particle size, shape 

and geometry of arrangement. 	For this reason the turbulence intensity 

based on this concept has no obvious relationship to the root mean square 

fluctuating velocity component. 	The second mode of turbulence may be 

due to adverse local pressure gradients that can cause boundary layer 

separation and shedding of vortices. 	The third may be due to the pre- 

sence of the distributor. 

Galloway and Sage (25) believe that the turbulence due to mixing of 

fluid streams may interact with the boundary layer flow on the particles 

in much the same way as free stream turbulence perturbs the laminar 

boundary layer flows with an enhancement of the transport rate on bluff 

bodies in a wind tunnel. These authors proposed .a model for heat and 

mass transport in multiparticle systems .(25) and evaluated the turbulent 

intensity using expressions for the Frossling number discussed earlier. 

In the analysis, the authors assumed the existence of stagnant zones 

occupied by boundary flow wakes or other relatively stagnant regions and 

this was taken into account by estimating a pseudo voidage similar to 

that employed by Kusik and Happel (47). 	Gaolloway and Sage (25) showed 

that the turbulent intensities in a fluidized bed gradually increased with 
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voidage, attained a maximum at voidage about 0.70 and then decreased to 

the limiting turbulence level of a single particle in an infinite medium. 

This was expected, since the "stagnant void fraction" showed a maxima 

with voidage. The average level of the intensity of turbulence as 

obtained by these authors is about 0.25 for a voidage upto about 0.9. 

However, their model would not be very suitable at low Reynolds number 

since the volume of wakes would be quite small. 	In the present experi- 

ments, the effect of "jetting" of streams is also expected to be small 

since the bed is shallow and in fact the mechanism is more important in 

fixed beds. 	It seems that the sintered distributor is possibly 

responsible for an increased level of turbulence in the present experi- 

menti. 	As the height of the bed was small, it is possible that the tur- 

bulence generated by the flow distributor could not decay appreciably. 

Kricher and Mosberger (44) reported a 30% increase in mass transfer rate 

in a fluidized bed due to turbulence caused by the distributor plate. 

Here, an increase of about 11% is thought to occur. 	Possibly, a con- 

venient method of quantifying this effect would be to measure the pres-

sure drop across the distributor. since this ie a I, assure of the energy 

dissipation. 	This factor is also likely to be responsible for the differ- 

ence in mass transfer measurements of various other authors, since no con-

sideration to the type of distributor is made or reported when comparing 

data. 

Although equations (6.1-11a and b) correlate mass transfer data well 

in a liquid fluidized bed, they are not useful for fixed and distended 

beds since the exponent q and Re
o 

have no meaning in that context. In 

Chapter 4 a semi-theoretical correlation has been proposed Which is suffic- 

iently general to be applicable to any multiparticle assembly. 	This is 

expressed by equation (4.2-5) where the coefficient G4 remains to be 

determined. 	The validity of this model lies in the fact that G4 should 
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be a constant for any multiparticle assembly and numerically equal to the 

constant B
o 

since for a voidage of unity equation (4.2-5) reduces to 

the case for a single particle. 	The present fluidized bed mass trans- 

fer data are utilised to test this model. 	Equation (4.2-5) can be 

written as 

' j = j 	- m 
Sh -1 

G4 Res2  (6.1-15) 
Re Sc 1/3  
s 

In Fig. 6.1-13 to 6.1-16 31 are plotted against Res. 	The solid lines 

are a least square fit of the data and each line is extrapolated to the 

corresponding Reo  for easy identification. 	Fig. 6.1-13 shows the 

3' factor data points for all experimental observations calculated using 

the measured value of the voidage c. 	Fig. 6.1-14 shows the same 3' m 

 as smooth correlations for Res/Reo  > 1/6 i.e. for the case when 

the different beds are assumed to have a random arrangement of particles. 

Both these figures show appreciable scatter amongst data for different 

Re
o 

cases and no single equation would correlate the different data ade- 

quately. 	It has been mentioned earlier that the voidage measurement in 

the present experiments is not entirely satisfactory and since 31 = juic, 

it is possible that uncertainty in the voidage is responsible for the 

above failure. 	Hence, voidage was calculated using the well established 

Richardson-Zaki correlation (64) and 31 factors recalculated. 	This is 

shown in Fig. 6.1-15 and 16. 	In Fig. 6.1-15 the data over the entire 

range of voidage has been correlated and in Fig. 6.1-16 the lower voidage 

data i.e. for Res/Reo  < 1/6 has been neglected in the correlations. It 

may be seen from these two figures that the scatter in the data is greatly 

reduced when compared to the previous case where measured values of void- 

ages were used to calculate 3' factors. 	Minimum scatter occurs in 

Fig. 6.1-16 except for the spurious case already discussed (Reo  = 20.09). 



• 

Fig. 6.1-13 : jr:1  against Res  

• 

0.7 

0.6 

0.5 -0 

Legend 	Re
o 	

Ref. Table 

o 8.4 	A.5-6 
-o 	20.09 	A.5-5b 
o 20.35 	A.5-5a 
• 21.4 	A.5-4 
+ 29.98 	A.5-3 
G. 	43.72 	A.5.2b 
• 43.72 	A.5-5a 
O 56.16 	A.5-1 

0.4 

0.3 

j
m 

= 0.86 Re 1  

0.2 

0.1 
2 	3 	4 9 10 

1 I 

5 6 7 8 

Re
s 

20 	25 	30 



1 2 3 4 	5 6 7 8 9 10 

Re 
S 

2o 30 	40 	50 60 70 80 90 100 

Fig. 6.1-14 : j' against Res  

Correlated lines for data points Re 
s 
 /Re

o  > 1/6 using experimental voidage 

Re
o  = 8.4 

0.5 

m 0.4 

20.09 

20.35 

21.41 

29.98 

43.72 

43.72 

56.16 

• I 	I 	I 	I 	1 	1 	 I 	I 	I 	I 	I 

0.3 

0.2 

0.1 

1.2 

1.0 

.0.9 

0.8 

0.7 

0.6 



3 	4 	5 	6 	7 8 9 10 	/0 2 30 	40 50 60 70 80 90 100 

Fig. 6.1-15 : j' against Re 1 	s  

Correlated lines for data points using predicted 
value of voidage from Richardson-Zaki equation. 

1.0 

0.9 

0.8 

0.7 

/ 43.72 

// 43.72 

/56.16 

I 	I 	III 	 I 	 I 	 I 	I 	I 	I 	!It - 

0.4 

0.3 

0.2 

0.6 

0.5 

jt  m 

Res 



0.4 

0.3 20.09 

Fig. 6-16 : jm against Res  

Correlated lines for data points Re 
s 
 /Re

o  > 1/6 

using predicted value of voidage from Richardson-
Zaki equation 

0.6 

Reo  = 8.4 
0.5 

20.35 

21.41 

iT = 0.86 Re-0.5  

43.72 

56.16 

0.2 

1.0 
0.9 
0.8 

0.7 

0.1 
1 	 2 

	
3 	*4 	5 	6 	7 8 9 10 

	
20 	30 	40 	50 60 70 80 90 100 

Re
S 



125 

In Fig. 6.1-16 equation (6.1-15) with G4 taken equal to Bo  = 0.86 is 

shown as a dotted line and this may be considered as an adequate expres- 

sion for mass transfer in multiparticle system. 	The expression is 

	

= 0.86 	Sh 	Rel/ 2  Sc113  mc (6.1-16) 

This equation is in close agreement with that of Snowdon and Turner (72) 

who report a value of 0.81 for the constant in the equation. 

Equation (6.1-11a) may be directly compared with the above equation 

by eliminating Re
o 

from the former using the Richardson-Zaki correlation 

which takes the form 

Shm = 0.86 cil(q-0.5)  ReIs/2  SC1/3 
	

(6.1-17) 

Thus when N(q-0.5) =-1 the above equation agrees with equation (6.1-16). 

From Table A.5-8 or using the -appropriate correlation the following values 

may be written: 

Re 
 

N q N(q -0.5) 

8.4 3.6 0.26 -1.008 

56.16 5.29 0.19 -1.02 

500 2.39 0.07 -1.03 

The value of N(q-0.5) may be taken as -1.0 so that both equations 

(6.1-11) and (6.1-16) are equivalent in a fluidized bed and that Shmcc C-1. 

The latter conclusion is directly reached from boundary layer theory. 

A comparison of equation (6.1-16) with the data available in the 

literature is shown in Fig. 6.1-17 taken from Beek's paper (6). 	The 

present correlation is possibly a slight improvement on the correlation 

proposed by Snowdon and Turner (72). 	A further comparison is shown in 

Fig. 6.1-18. 	Also shown in this Figure is the result for free surface 

model for e = 0.85 obtained by Leclair and Hamielec (49) and given by 



126 

Fig. 64-17 : j1;1  against Res  

Reproduced from reference (6) . 
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equation-(2.3-9). 	As expected the free surface model shows a positive 

deviation at low Re
s 

and a negative deviation at high .Re
s
. 	This trend 

in the deviation of the free surface model from experimental data is simi-

lar to that observed by Leclair and Hamielec (48) in the drag comparison. 

The fluidized bed data of Couderc et al. (14) are not available in tabular 

form for comparison. 	Their proposed correlation predicts SVC
-2 

Re
s
; 

0 however their bed expansion data possibly may be represented by c cc Re
s
.5 

 

so that Couderc et al.'s (14) correlation could also be expressed as 

-1 0.5 
Sh
m 
 cc c Re 

 

It would be interesting to find out why the data in a fixed, dis-

tended and fluidized bed may be represented by a single equation although 

the physical character of the fluidized bed is quite different from the 

former types of bed. 	In a fluidized bed, the voidage may fluctuate and 

the particles are moving. 	The boundary layer model that describes the 

flow in any multiparticle assembly does not take into account any such 

affects; it only considers that the length of the boundary layer is pro-

portional to the product of voidage and diameter and thus one would expect 

that the form of the correlation may be the same but that the coefficient 

G4 of equation (4.2-5) would be different for fixed or distended and 

fluidized beds. 

Assume that equation (4.2-5) is valid for fixed or distended beds with-

no variation of the filtration velocity with respect to the particle and 

no local variation of voidage, then 17
c 

may be written as 

. 
U05  . 

c 	c 
(6.1-18) 

where Us  is the superficial or the filtration velocity and this is the 

same whether witl:• respect to the particles in the bed or an observer 

fixed in space. 
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In a fluidized bed, the particles are moving up and down in the bed, 

so that the settling velocity of a particle at any instant could be ex-

pressed as an average velocity which is the superficial velocity and a 

small upward or downward velocity of the particles. Also the voidage 

of the bed may similarly be represented by an average voidage and a small 

deviation from the mean. Thus in a fluidized bed 

U
s 	

U + AU
s 

e = e + Ae 

where Us is the settling velocity of a particle and e is a local void-

age and AUs  and Ae are small deviations from the mean value and bar 

denotes an average value. 

Now let equation (6.1-18) which is assumed to be valid for a fixed 

or distended bed be perturbed by a small amount in the variables Us  and 

e so that the deviations are small compared to the mean value. 	It is 

assumed that these deviations are of the same order in a fluidized bed. 

Then one can expand the variables around the mean values approximately as 

follows: 

(AUs)2  

	

U0.5 -.5 0.5 	0.25 
-4.5 

	

= Us + — AU — 	+ smaller terms s 2  

	

U
s 	Us 

... 

 

0.5  = Tj0.5 _ 0.25 	(AUs)2 

s 	2. 	
U
-1.f 
s 

since &Us= 0 

	

or U
0.5 
 = U 

-0 	1 - .5 [ 	0.25 ( AU) 2  
s 	s 2 	

11 
(6.1-19) 

SiMilarly 

   

 

e 1 .1 -2 
6.c 	.c3 

(Ae)2  + smaller terms 

 

 

E 1 = -1 + r 3  (A02 	since Ae = 0 
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or 	
E- — 	Az 2  

(6.1-20) 

Then the average value of the mass transfer coefficient can be written 

from equation (6.1-19) and (6.1-20) as 

—0.5 
0.25 (Us )2] [1. 	)2] K • . 	s 	El  _ 

	

7 		
2 

Us  
(6.1-21) 

The first term in the brackets is less than unity and the second term 

more than unity, i.e. the particle motion tends to lower the mass transfer 

coefficient and this is offset by a fluctuation in voidage and assuming 

that the order of these fluctuations are the same, then they would cancel 

each.other out. This means that the combined effect of movement of 

particles and voidage fluctuations does not effect equation (6.1-18). 

This may explain why the same equation applies in fixed, distended and 

fluidized beds. 

6.2. 	Solution of the forced convective diffusion equation  

Equation (4.1-14) shows 17,7  varies with flow rate in a manner similar 

to other solid-fluid systems having constant diffusivity except for the 

appearance of the term F. 	For example, for creeping flow (equation 

(2.2-8)) 

1 	 2 	o  
Rr + - U sin e r- - — 

• 2 	2r 

o 	
3 

= — 2 
— U sin

2 
 6 

and  substitution of this value in the integral in equation (4.1-14) yields 

s in2  0 = 	-2-3  11 7 
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and the expression for ic is 

3 1/3 -.7T  2/3 
= 1.31 (-

2) 
	(-

2) 
	F( —

DAS 	1/3  )2/3 U  

DAS 2/3 1/3 
= 2.03 F 	U 

When 
vYAb 0' 

from equation (4.1-13) F 4- (1/12)1/3  and 
-AR  

7
v 

DAS 2/3 1/3 
= 0.89 (-4I-) 	U 

In the limit whenYAR YAb 0,  
the controlling diffusivity is DAs, 

i.e. as if only species 'A' is present. 	This limiting value is com- 

parable with a constant diffusivity case. 	Friedlander (18) has also 

reported a value of 0.89 for the above coefficient for a constant 

diffusivity case using a somewhat similar concentration profile and 

this possibly gives added confidence to the solution obtained. Equation 

(4.1-14) would also predict the square root dependence of mass transfer 

on velocity at high flow rate. 

It is difficult to say whether this solution predicts the correct 

dependence of the mass transfer coefficient on concentration. 	Snowdon 

and Turner (73) showed that for the limiting cases 

YAR YA 	and YAR YAb 1,  

the mass transfer coefficient would vary. by a factor of (a+1)2/3. 

Though their (73) solution is based on a "stagnant film" type analysis 

their prediction seems reasonable. 	This may follow from the following 

argument. 

The diffusional flux may be written using equation (A.3-29) as 

follows: 



J* 
A x=0 
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For 
YAR YAb 

dytA 
= - 	 Ab- C D 	

= v(e) CCb(YAR v  ) - Cb AS dx 

YAR YAb4°  

and v 
- AR 4 YAb 4 1  

' A l 	

\ 

 x.0  = 	CCbDe'sdxA 
x=0 	

= Kv(0) Ccb
(YAR YAb)  

y
R4YAb-)  

Now drawing an analogy with single particle mass transfer studies at con-

stant diffusivity, it is probable that the mass transfer coefficient 

DAS 	 213 
would differ by a factor (D 	

= (a+1) 	for the two limiting 
DES 

21 / 3(a+1) 
cases. 	In the present analysis this ratio is 	. 	The former 

(a+2)1/3  

conclusion is rather intuitive and until an exact solution is available 

any further comment would be premature. 
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• 

A.1. "DiffusiOn under concentration gradient and'an.eXternal'force 

The simplest case of diffusion is concentration diffusion in a 

binary system and this is usually expressed by Fick's law of diffusion. 

Consider liquid phase diffusion in a binary ion exchange system under 

conditions of constant temperature and pressure and where ions are pre-

sent in low concentration. f‘,  A binary ion exchange system consists of 

two phases, namely the exchanger phase which is normally a solid and a 

liquid phase. 	The liquid phase contains the ions designated as 'A' 

and 'B' which are the exchanging ions often called counter ions, 

mobile non exchanging ions 'C' called the coions which are oppositely 

charged to that of counter ions and the solvent. The solid phase con-

tains an inert matrix with fixed coionic groups and the mobile counter 

ions. Thus the liquid phase has four components, namely two counter 

ions, one coion and the solvent. 

Another characteristic of an ion exchange system is the presence of 

an electric field which must be taken into account in the driving force 

for the diffusion flux. 	This electric field arises due to a tendency 

for the creation of a disturbance of the electroneutrality which is 

caused when the mobilities of the counter ions are different. 	If the 

mobilities of the diffusion ions are different, the faster ion tends to 

diffuse at a higher rate and any excess flux produces an electric field 

which slows down the faster ions and accelerates the slower ions. 	The 

result is 'a diffusion potential restoring electroneutrality. 	The devia- 

tions from electroneutrality remain negligible except in the electric 

double layer at the ion exchanger-solution interface which is only a few 

angstrom units thick (37b), 

Since binary ion exchange is strictly a multicomponent system, it 

will be treated in that way rather than by starting with the usual 
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Nernst-Planck equations. 	There is some ambiguity as to the identifica- 

tion of the diffusion coefficient in the Nernst-Planck equation. 	Most 

authors use the term self-diffusion coefficient but actually mean binary 

diffusion coefficient of ion-solvent pair. 	It will be seen that when 

ions are present at low concentration, then they may be assumed to dif-

fuse independently of each other and each ion-solvent pair may be treated 

as a binary pair and the Nernst-Planck equation applied. Also the iden-

tification of diffusion coefficient will be clear. 

The theory of diffusion is complex and not complete. Diffusion in 

dilute gases has been treated quite satisfactorily by kinetic theory. 

It has also been observed that many dense gases and fluids may be treated 

by kinetic theory quite adequately. 	The following definitions and terms 

will be useful in recognising various terms of the kinetic theory result. 

For a mixture having n components 

n • 

P.v.  
i = 1 

	

and n. = p.v. 	are the mass 1 	1 1 
v = 	 

n 

 

 

14E: Pi 
= 1 

average velocity of the mixture 

and mass flux of species i with 

respect to stationary coordinates 

respectively. 

E C.v. 

1 	
= 1 

v* - 	and N. = C.v. are the corres- 3. 

Ci  ponding molar quantities as 
= 1 

above. 

j
i 
	p.(v.-v) is the mass flux of species i with 

respect to mass average velocity 

and is called diffusion mass flux. 



J* 
1 

Pi = p, 	/2 Ci = C, 
i=1 	i=1 

C.
- v*) is the corresponding molar diffusion 

3. 	a. 

flux as above 

w. 	=_ 
P• 

x. 1 
C. 

) 
) 
) 
) 
) 

) 
) 

P 	 ) C 
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where pi, Ci, wi  and xi  are the density, molar con- )) 

centration mass fraction and mole fraction of species 

i and p and C are the density and molar concentra-))  

Lion of the mixture 

The kinetic theory result (7C) for mass flux with respect to mass 

average velocity due to a concentration gradient and an external force 

(neglecting pressure and thermal diffusion) in ideal solution, is given 

by 

M.X. 	Pk 
j 	M. M. B 	Vx + 	-g + 

P 	 ij 	RT 	j 	p gk 	
(J
.
1-2) 

j=1 	 k=1 

Here B.. is the diffusivity of the pair i-j in a multicomponent mix- 

ture. 	Here g is the external force and M the molecular weight. 

Because B.. is concentration dependent equation (A.1-2) is inconvenient 
13 	. 

to use. 	However, for some calculations an effective binary diffusion 

coefficient Dim  may be defined for species i in a mixture. 	This is 

seen below. 

The molar flux for species 'A' in a binary mixture of species 'A' 

and 	may be written after manipulating equations (A.1-1) and (A.1-2) 

as 

N
A 

= -CDAB [VxA 
 + 

MAXA
RT  - -gA  + (gAwA  + gBwB) I] 

+ xA(NA  + NB) 	 (A.1-3) 
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The special notation DAB  is used for BAB  in a binary mixture. 	In an 

analogous way, the molar flux of species i in a mixture of n compo- 

nents can be written in terms of a diffusion coefficient D. 	called 
1M 

the effective binary diffusion coefficient for the species i as 

N. = - C D. 	Vx. 
1 	1m 	1 	RT 	

+ 	w.g. :) 	+ x . 	lq N. 	(Al . 1-4) 
3 3 	3 

4. MR  
.
TX 

j=1 	j=1 

Here an expression for Dim  will be sought in terms of appropriate binary 

diffusion coefficients for trace concentrations of species 2, 3, 4..in 

nearly pure species 1. 

The Stefan-Maxwell equation for this case is given as (7C) 

M.X. 
Vx 	_,. 
1 	RT 	51 	353 

j =1 

. n 

(x.N. - x.N.) 

	

_j  CD1.. 	3 

	

1.3 	 3  j=1 

(A.1-5) 

It may be mentioned here that equation (A.1-5) is derived from (A.1-2) 

and contains the D.. rather than the D... 	Equation (A.1-4) may now 13 

be written as 

n 	n 

	

M.X. 	 -N. + x..E N. 

	

a. 1 	 1 	1 =1 j 
Vxi + RT 	- 	

3  

	

gi + 14E: wjgj 	- 	
C Dim j=1 

Comparing equations (A.1-5) and (A.1-6) we have 

n 
- Ni  + x. 2: N. 	n 1  

j=1 3 _ 	1  

	

, 	.. 	.. 
C D. 
	 (x 1N - x 3 	3

N 
1
) 

C D. 	ij 

	

im 	j=1 

(A.1-6) 

(A.1-7) 

If component 1 is present as nearly a pure species, i.e. xl = 1 and 

x. = 0 	equation (A.1-7) reduces to 

i#1 

	

N. 	N. 

	

1 	1 
C Di 	C

im 	Dl 
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i.e. D. 	=. Dil  (A.1-8) 

Thus diffusion coefficient of the trace species i in a mixture is 

equal to the binary diffusion coefficient of the species i and the 

nearly pure component. 	This is not the self diffusion coefficient. 

Self diffusion means diffusion of species i in itself. , 

It.is possible‘ to write the diffusion flux for the ionic species 

in a mixture where the ion may be subjected to an external electric force. 

due to its ionic nature. 	Also a- body force B acts on each species. 

The total force gi  may then be written as 

gi = B+ 	Z. q E 
N
AV 
M  

Z. 
= B- M F V 4) 
	

(A.1-9) 

where a  is the electric charge, E is the electric field, 4  is the 

potential and its gradient taken as negative, NAy  the Avogadro number, 

F the Faraday constant, Z the valency of the ion, and B the gravity 

force. 	Using equation (A.1-9) one can write 

n 

gi E 
j =1 

w. g. 
J 

	

Z. 	n 	Z. 
B 

M 
 F V 4) - 	w.(B - M  

1- F0 4)) 
 

j=1 

n 	. 	-n 

	

Zi 	 p. 	Z . 
• 

= B- 17:- FV4) -B 	 n + E-2- 17137,  FV4) 

	

i 	 J j=1 	j=1 

Z. 
-p  E c;  z;) F 

V 4 
j=1 

Z. 
- — F V 4) 

Mi  
(A.1 -10) 
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Since 	I] C.Z. = 0 for the condition of electroneutrality. 
j=1 

Using equation (A.1-10) equation .(A.1-4) may be written as 

N. C Dim I. + 	F 	+ x. E NJ  
RT 

x.Z. 
N
1  

1 1 

.j=1 

(A.1-11) 

From equation (A.1-1) 

Ni

n  

 1 
= J* + x. 1: N. J 

.j=1 

and hence the expression for the diffusion flux Jt can be written from 

equation (A.1-11) as 

C.Z. 
Dim 

J* = - D 	VC. 	
1 1 F v (I)  

1 	RT 
(A.1-12) 

  

Equation (A.1-12) is the Nernst-Planck equation. 

• 
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A.2. .Diffusional flux in terms of concentration gradient for a binary  

ion exchange system 

In general, the liquid phase of a binary ion exchange system con-

tains four components, namely the two counter-ions 'A' and 'B', the co-ion 

'C' and the solvent 'S'. The co-ions in the solution phase are not held 

fixed as are the counterparts in the resin phase. This mobility of the 

co-ions creates a non zero concentration gradient for the co-ions, though 

no net transfer of co-ions can occur across the solid liquid interface 

due to the existence of a Don6 potential which prevents co-ion transfer 

(37C). 

The diffusion flux of the ionic species may be expressed by equation 

(A.1-12) when ions are present in low concentration. This is given in 

terms of an effective binary diffusion coefficient for the diffusing 

species and the solvent and two gradients, viz., the concentration and 

electric for the driv.ing force of the diffusion flux. 	However, it is 

possible to express the diffusion flux in terms of the concentration gra-

dient alone, but with a complicated form of the diffusion coefficient 

which in general is dependent on concentration. 

From equation (A.1-12), the liquid phase diffusion flux equations 

for the individual ionic species for a binary ion exchange case are; 

J*A  • 

J* 

J* 

= 

= 

= 

-DAS  

- DBS 

- D
CS  

[V 	A 
 + 

V C
B 

4. 

[V CC 

Z
A
C
A 

F V 4) 

• 

F V c 
 

F 	V 	(I) 

(A.2-1.1) 

(A.2-1.2) 

(A.2-1.3) 

RT  

Z
B
C
B 

RT  

ZCC C 
RT 

It may be seen that in equation (A.2-1.3) the electric potential gradient 

is taken as opposite, in this case positive for the co-ion 'C' since 
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the charge is opposite to that of the counter ions. 

The following relations apply to the condition of electroneutrality 

and no net current, i.e. 

L Z.C. = 0 	condition of electroneutrality 
1 1 

i=A,B,C 

i.e. 	ZACA  + ZBCB  = ZeCc 	 (A.2-2) 

and F E Z.N. = 0 	condition of no net current 3. 1 
i=A,B,C 

i.e. 	ZAN
A 
+ Z

B
N
B 

= Z N 
C C 

From equation (A.1-1), N
A  = J*A ' 

+ C
A 
 v* and hence 

ZA  J*A 
 + Z

B 
 J*
B 
 + (ZACA  ZBCE

)v* = Z
CC  
J* + Z

C  CC 
 v* 

Using equation (A.2-2) 

Z
A 
 J*
A 
 + Z

BB  
J* = ZC  J* 
	

(A. 2-3) 

Equations (A.1-1) may now be manipulated with the conditions (A.2-2) and 

(A.2-3) to yield the following relationship without the appearance of the 

electric potential gradient and in terms of the concentration gradient of 

only one of the species. 

J* 	Z Z 
 CA 	JA 

	J* 	Z 
A 	A B A 	A 	C C 
D
AS 

Zccc(ZB  + Zc)
Ab DBS 

ZB  Dcs  

Z
C  CC 

 (Z
B 
 + Z

C 
 ) - Z

A  CA 
 (Z
B 
 - ZA 

 ) 

 ZC  cC  (ZB 
 + Z

C  ) 
	

V CA 
 

(A.2-4) 
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A.3. . Solution of the forced convective diffusion equation (4.1-10)  

Equation (4.1-10) represents the continuity equation for the species 

'A' in a binary homovalent ion exchange system. 	In spherical coordin- 

ates it is given as 

acA 	v8 	A = 1 	2DAS 	aC A
= 	

(A. 3-1) 

vr Dr 	
— 	— D 
r ae 	ar 	CA 	 r2 

r2 	ar 	
and 

a — 2 	 (4.1-10) 
Cc  

In writing equation (A.3-1) it is assumed that the Peclet number is high 

so that diffusion in the angular direction 0, may be neglected; also 

the problem is considered symmetrical in the (I) direction. 	The coordin- 

ates are shown in Fig A.3-1. 

Fig A.3-1. 	Coordinate system used in describing equation (A.3-1). 

Flow 

Let v
r 

and v be expressed in terms of the stream function 11). 	In 

spherical coordinates, they are 

1 
vr 

2  sin 8 	
0 

 

(A.3-2) 

v = + 
1  

8 	r sin e 	Dr 
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Define anew radial coordinate x as 

x = r - R 	 (A.3-3) 

The boundary conditions are 

R, 	x = 0, 	C
A C AR 

(A. 3-4) 

r = R + b, x = b, C
A 	

C
Ab 

where b is the thickness of the concentration boundary layer. Using 

these new variables equation (A.3-q) becomes 

acA 	acA 	a 	2DAS A, 	BC) 
- sin 0   R2 a  ae ax 	at. ae 	 ax CA 

	
ax 

a ---+ 2 
CC  

(A.3-5) 

Here R + x = R since x << R due to the assumption of large Peclet 

number. 

Since the problem is non linear, an exact solution is difficult and 

therefore, an approximate solution will be attempted. 	An integral 

method of analysis will be used for this purpose. 

Equation (A.3-5) may be rewritten as follows 

a ro r 	re 	) 
32
* + (C - C ) a2* 	a* a  (C C ) ae ax 	 axDO 	A 	Ab axDO 	ax DO 	A Ab 

l a 	2DAS 	acA 
R2  sin e 	

C A/Cc  ax 	a 	+ 2 	ax • 

or 

2DAs 	ac 

	

=   R2 ax  sin 6 ax 	a CA/Cc  + 2  
(A.3-6) 



[(C
A 
 - C ) 

Ab ae 	
= o 

x=0 
since — 30 = 0 

[ (C 	C ) Lk] 	= 0 
A 	Ab DO 

x=b 
since 

(CA - CAb)x=b 
	0 
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Integrating equation (A.3-6) between the limits x = 0 and x = b i.e. 

across the concentration boundary layer gives 

x=b 
x=b 

a* = 
il 

) 	f a 
	( CA 

r ) 
CAbi  3x 

x 0 	
ae 	CAb)  D$ • 

x=0 

2D
AS 	

1C 3 ] 
[ 

= 

	

	R2 A  sine 
a CA/CC   + 2 	3x 

or 

x=b 

a
ae 

f„, — c 	a* 	
2DAs  R2  sin 0 DC

A 
 ax Ab
) 	x = 

x=0 	
a C

A/CC 
 + 2 	3x 	

(A.3-7) 

x=0 

The following facts have been used' to obtain equation (A.3-7); 

x=b 

x=0 

	

[2DAs  R2  sin 0 3C 	 ac A A] 
a 	+ 2 	ax 	

since 	"1  
) 

0 at the edge 
CA/ C 	 3xc 	

x=b 	x=b 

of the concentration boundary layer which is located at x = b, any gra-

dient of concentration would vanish.Using the Ldibnitz formula the left-

hand side of equation (A.3-7) becomes' 

x=b 
3 	311) 

..t.-a--0- (CA - CAb) -
a-7 dx = 

x=0 

= 

x=b 
d  f .--- 
de 

X=0 

311) 	db 	x=b  dx 
(C -C 	) — .dx - [--(C -C 	)4] + [--(C 
A 	Ab 	de 	A 	Ab ax 	 A0 

-C 	) 
A 	Ab 

.11 
ax x=0  



x=b 

where M' = - jr. 	* d C
A 

x=0 
(A.3-10) 
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The last two terms on the right-hand side are zero and equation (A.3-7) can 

be written as 

d
. 	x=b 

	

a* 	[21)AS R2  sin e acA • 
(CA - C ) ---dx - 	

CA/C 2 	ax 	(A.3-8) de 	Ab ax 	a 	c+ x=0 x=0 

The integral quantity of the above equation is related to the total amount 

of mass diffused which can be seen from the following relationship. 

2w 	Tr 	
a cA  21114, = 	

2D
AS  R2  sin 0 de d* a CA/  + 2 ) 	( ax 

0 	o 	x=0 	x=0 
.......■••••••••••••••■••• 

diffusion concentration area 
coefficient 	gradient 

Thus equation (A.3-8) may be written as 

dM' 	d 	
x=b 

.I" 	a* 	2D
AS R2 sin 0 a  Al — 	— 	 ;-c. dx = - de 	de 	(CA-CAb  i ) 	

a CA/Cc+ 2 	ax x=0 x=0 
 

Also f(CA-CAb ) 	= 

x=b 	x=b 

f d{ 	(cA cAb  )1p) f 	d cA  
x=0 	x=0 

x=b 

	

[2DAS R2  sin 	@C A  _ Hence 	d 	d CA = - de 	de 	 a C
A 	 0

/C
C 
 + 2 	ax x= x=0 

(A.3-9) 

Since the above equations have two dependent variables C
A 

and C
C, it is 

convenient to define a single variable called the equivalent fraction as 

CA  

YA CC  
(A.3-11) 
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Now 	d CA  - yAd Cc  = 

From equation (4.1-6) we have 

a  d C - dcA a YA 2  

Then using equation (4.1-8) 

PCb (a YAb 1) (a YA 2)  
dCA  = 	 d YA 

2(a yA 	1)312  

(A. 3-12) 

(A.3-13) 

Replacing this new variable in equation (A.3-9) and using a new symbol M 

- dM. 	
d 	
f 	

(
1YA

+2) 	a YA 
li) de.  = 	

x=b 

de 	(ay
A
+1)3/2 

 ax dx = 

x=0 

2D
AS R2  sin 0 (3y A 

6x 
(aYAR+1)3/2 	x=0 

The corresponding boUndary conditions are 

x = '0, YA 	YAR 

x = b, 	YA = YAb 

(A.3-14) 

(A.3-15) 

A concentration profile is now assumed which satisfies as many boundary 

conditions as possible and yet is quite simple to manipulate. 	The follow- 

ing concentration profile is chosen: 

= 1 [ 	1  11 
YA 	a ( f1 	2 (f1 - f3 b 

(A.3-16) 

where 
	

fi 
(1  aYAR)  

and 

1  
f2 1 

(1  'YA02  

f3 = fi f2 

(A. 3-17) 
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The above profile satisfies the boundary conditions (A.3-15). In addi-

tion it satisfies the condition 

3 	[ 	R2  	ay 
= 0 	both at x = 0 and .x = b 

ax 	(ayA  + 1)312 °x  

which follows from equation (A.3-5). This is true only when the concen-

tration boundary layer is thin, i.e. R + x = R. However the concentra- 

aYA 
tion profile does not satisfy the condition ax  - 0 at x = b and 

this is a common limitation met by other workers when a relatively simple 

concentration profile is used. 

As this is a thin concentration boundary layer problem, it is suf-

ficient to use the velocity field near the surface of the particle. Hence 

* is expanded around the surface as follows 

= 1PR 	R 	R 2 

x2  
R 2 

(A.3-18) 

Since *R 
and *' = 0 where the primes indicate the first and second 

Then 

-derivative and the subscript 

1 

R 	indicates 

+ 

the surface of the particle. 

(A.3-19) 

p2 +1 	
) 
) 
) 
) 

= 	P
3 	

) 
) 
) 
) 	(A. 3-20) 
) 

Let 	p 
(f1 

(aYA 4. 2) 	- 

(aYA  + 1)3/2 

f 3 i;;;) 

1 

(f1 f3 

1 

(f1 - f3 i)" 

ay _ 
2f3 	2f3 3 
	

) 
	 - 	n 

DX abal  f3 	ab r 	 ) 



b24)" 
1/f 2  

lif 

(pf + 1) 
f32a P2 

b2Vitt  fl = - f 1 In (-f2- - 
f32a  

b2eA 
f32a  

b = 
Mf32a 
-11 cA or, (A.3-22) 

1 1 p)  
_ ,2 dp  

(f 1 - f2
)3 

f12-  f22  
3 	f2 
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b dp = 
f3 p2 

x2 	b2 	1 2 
R *" 	'PH 	(fi - R  2f3 

The boundary conditions are 

x = 0, 

x = b, 
1_ 1 

P  fl f3 f2 

(A. 3-21) 

Substituting the quantities in equations (A.3-20) and (A.3 21) and using 

equition (A.3-14) one can write 

dx 

fl 2 	(fl 	f2)3 	f12-  f22  
where 	A = - fl In 	3 	 + 	

f2 	
(A.3-23) 

L2 	2 

Also from equations (A.3-14) and (A.3-17) 

dM 2DAS R2  sin 0 ( A ) _ 
de - (ayAR+1) 312 	ax x=0 



f v dM = - f
_BRA 4DAS  R2  sin8 d8 

a 	a 
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x=0 
(A. 3-24) 

4DAS R2  sin 8 f3  

ab 

Since from equation (A.3-20) 

2f3 (BY ) 
3x 

	

x=0 	abfi3  

Also from equation (A.3-24) 

1 	dM 

	

(-?ax  )x=0 	
- 

2DAS  R2  sin 8 fl- q de 

(A. 3-25) 

(A.3-26) 

Replacing equation (A.3-22) in equation (A.3-24) 

The lower limit on the left hand side shows that at 

diffused. 	On integration 

• 

0 	= it 

2/3 

nothing has 

213 A113 
r  

M = R2) 	4Nri-p 	 dO  

[ 

(A.3-27) - (6DAS
sine 

a 
j  0  

The flux 
 A 

may be written from equation (4.1-7) as 
x=0 

2DAS 	(dCA) 

jIl 	
a CA x=0 	 x=0 2-  Cc  

or in terms of yA  from equations (A.3-11) and (A.3-13) as 
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(00,  4.1.0/2 	
d, 

D
AS 

CCb 'Ab ' 	'A J
Adx ;) x=0 x=0 	(aYAR+1)3/2 

A local mass transfer coefficient Kv(e) is now defined as 

DAS CCb ("Ab+1)112  (dYA) JII 
x=0 	

- 
(ayAR +1)3/2 	dx x=0 

= KV(6) CCb (YAR YAO 

(A.3-28) 

(A.3-29) 

The subscript V in Kv  serves to remind that the diffusion coefficient 

is not constant in this system. 

Using equations (A.3-17) and (A.3-26) 

Kv  (e) — 1 	dM 

2f2 R2  sine kYAR Y 	
de 

Ab) 

and the average mass transfer coefficient 	c is 

2n 

47R2 	
jr 	R2  sin 0 de d(1) 	dM

0 2f2 R2  sin 0 (YAR 	)
0 	

- vAb-   
de 

1 dM 

 

4f2 R2  (YAR YAb)  n 

= 
M 

(A.3-30) 
4f 2 R2  (YAR YAb)  

and from equation (A.3-27) 

Tr (6DAsR2)2/3A113 	
2/3 

=ITIT sin 6 de 
4f2 a R2(YAR YAb)  



R = d/2 

Kv  

or on substitution the value of 

we have 

(12)2" D213  AS 

A 	from equation 

f1)2  
fi In 	r 	- 

L 2 4 d2/3  f2 a (v -- AR - YAb)  

(A.3-23) and using 

1/3 
(f1 	f2)

3 	
f12-  f22  

3 	f2 
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2/3 

V-7-ii; sin e de 

0 

2/3 	2/3 

1.31
DAS) F 	.7 J61 -  
d 

1p" sin e de 

]  

(A.3-31) 

where F may be written after substituting the values of f1 and f2 

from equations (A.3-17) as 

1 
1 + ay

Ab  
in 1 + ay

AR 	(l+ctYAb)i( 	ayl 	ayAb+1 AR+1 	) 
- 

(aYAR+1)  
F  = (1 aYAb)  

1 

1 	
(1 + ayAR)1 	

(I + ay
Ab
)1  

-(A . 3-32) 
3 

a3(YAR YAb)3  

It would be interesting to find the limiting value of the quantity F 

when v - AR -+ YAb' but this is cumbersome, since when v - AR + YAb' the 

limit of the first term in the bracket of equation (A.3-32) on straight- 

forward substitution becomes indefinite. 	However differentiating the 

numerator and the denominator three times with respect to YAR  the limit 

of the first term is obtained as 

a3(YAR YAb)3  

3 1/3 



and when 

F ÷ 

v 
'Ab 

(1+a)1 

1 

YAR ' ÷  

[ 

0 

Y 	
÷ 	1 Ab 

 1 + 
24(1+07'2 

(a + 2)1 / 3  ) 

24
3 	(1 + a) 	) 

fl ‘1/ 3  
). 
) 
) 
) . 

(A.3-33) 

) 
) 
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1 

24( v -a- Ab + 1)712  

The second term in the bracket of equation (A.3-32) may be written 

as 

3 
1 

-5 
L (1  + aYAR) 1 (1  aYAb) 	(1 aYAR) (1 aYAb)21]  

In the limit 
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• 

A.4. 

	

	Spectrochemical analysis for the Na+  content in a polystyrene  

'resin bead  

Spectrochemical analysis uses the characteristic radiation emitted 

by atoms and molecules for their identification and quantitative deter-

mination. Most atoms and molecules can be exicted by a light source 

such that some electrons are raised to a higher energy orbital and subse-

quently.decay emitting characteristic radiation. 

In analytical spectroscopy, the intensity of the emitted radiation 

and concentration of an element is usually determined empirically by 

means of standard samples having known concentrations. 	In addition, 

relative intensities are usually measured avoiding the considerable diffi-

culty that would be encountered in the measurement of absolute intensities. 

For the present case the Na5889  line was chosen for the quantitative 

estimation of sodium in an ion exchange resin particle using an arc as the 

excitation source. 

Because the line intensities can be afffected by several factors due 

to variation in "excitation, optical alignment exposure etc. the straight-

forward comparative method does not provide a sufficiently precise esti- 

mate of concentration. 	The internal standard method provides an effective 

means of improving the precision of spectrographic analysis. The internal 

standard is an element that is present in each sample and standardised as 

a major constituent preferably at a fixed concentration. 	The reason 

why the internal standard should be present as a major constituent can be 

understood by studying the following hypothetical intensity vs. concentra- 

tion curve shown in Fig. A.4-1. 	Above a certain value of the concentra- 

tion of an element, the intensity of a line attains a constant value. 

Thus, a major constituent in a sample would exhibit this characteristic. 

In the internal standard method, it is assumed that all the variables, other 
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Fig. A.4-1. 	A hypothetical intensity vs. concentration curve. 

Concentration 

than concentration, affect the measured intensities of the analysis line 

and the internal standard line to the same degree so that the intensity 

ratio of the samples and standards to the internal standard would be a 

better measure of the amount of material present. The internal stand-

dard method is expected to provide an automatic correction for the factors 

-mentioned above. 	Unfortunately the case may not be so simple, since a 

difference in ionization and excitation potentials, boiling points, sta-

bility of compounds and self-reversal affects would effect the intensity 

ratio, limiting the choice of internal standards. 	Thus in all applica- 

tions, the validity of the fundamental assumption of the internal standard 

method and the reliability of results.depends upon reproducibility of ex-

citation optics and photography and must be checked out experimentally. 

The basic assumption of the internal standard method is then 

C
A 

=. f (I
A
/I
S
) 

where-.
C
A 

is the concentration and IA 
and I

S 
 are the relative inten- 
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sities of the analyte and internal standard line. For many cases, the 

experimental data indicates that concentration may be expressed as 

log CA  = K1 log IA/IS  + K2 

where K1 and K2 may be assumed constants. 	In the present case 

Cu5782  is used as the internal standard line. 

To calculate the intensity ratios, it is necessary to convert the 

microphOtometer readings to relative intensities. 	In order to do so the 

film or the plate referred to as the emulsion in which the spectrum is 

recorded, must be calibrated so that its response to light is known quan- 

titatively. 	The calibration is simplified greatly by the use of rela- 

tive intensities, so that it is not necessary to calibrate the emulsion 

in an absolute sense. 	Of the various methods of emulsion calibration 

the "two line" method has been chosen. 

In the two line method of emulsion calibration, two suitable lines 

bearing a fixed intensity ratio are selected and several spectrograms 

are recorded by varying the intensity. 	Thus a datum is provided, by 

the two readings, one representing an intensity weaker or stronger by 

some fixed ratio. 	The line pair should have the characteristics that 

the intensity ratio remains constant and be. independent of composition 

which can be accomplished using two lines of the same element which have 

similar excitation characteristics and that they should be sharply defined 

and free from the interfering effects of other elements. 	Also it has 

been found advantageous experimentally that the intensity of the two 

lines should be between 1.2 and 2 and that the wave length of the 

lines should differ by no more.than 100 R. 	In the present experiments 

the two lines selected are -Na5889  and Na5895, the former being the 

line used for quantitative estimation. 	To produce a series of spectro- 

grams a seven step sector has been used. 	The procedure for calculation 

is as follows. 
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Both members of the line pair, i.e. Na5889  and Na5895  are measured 

in all spectrograms by a microphotometer, setting the full scale deflection 

of the microphotometer reading 100 for an unexposed emulsion and a reading 

of zero on an image of infinite density. Using the pair of points a 

curve known as the preliminary curve is plotted, usually in logarithmic 

coordinates. 	Such a plot is shown in Fig. A.4-2. 

Next the emulsion calibration curve is plotted using the preliminary 

curve and the intensity ratio of the two lines. As the initial point on 

the emulsion curve, a deflection say 92 which is higher than any to be 

used in the analysis, is selected. 	Now using this value as the ordinate 

in the preliminary curve a value of 90 is read from the abscissa. Now 

if the deflection 92 is given an intensity of 1.0, then the relative 

intensity for the reading 90 would differ by a factor ri which is the 

ratio of the intensity of the two lines. 	Now the value of 90 is used 

as the ordinate in the preliminary curve to obtain a second value of 88 

from the abscissa which corresponds to a relative intensity of q,  com- 

pared to that of 1.0 for a microphotometer deflection of 92. 	This 

process is repeated, until deflections take a value smaller than any used 

in the routine analysis. 	Using the readings of the ordinate and the 

corresponding relative intensity an emulsion calibration curve can now be 

plotted. 	The sole purpose of this curve is to provide a means of deter- 

mining the value of the relative intensity factor for any microphotometer 

deflection from a given datum (in this case a value of microphotometer 

deflection 92 is given a value 1.0• for the intensity factor). 	Hence, 

the actual intensity ratio of the two lines are not required except very 

roughly. 	The ratio of the microphotometer reading may serve as a measure 

of the ratio of intensity of the two lines. 	Since, the response of the 

emulsion is not linear over the entire range of exposure, an average value 

of the ratio for the two line pair has been used as the intensity ratio 

• 



Fig. A.4-2 : Preliminary curve 
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Fig A.4-3 : Emulsion calibration curve 
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Fig. A.4-8 : Relative intensity ratio against concentration in ppm.  
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factor. 	Fig. A.4-3 shows such a curve where an intensity ratio factor 

of 1.07 has been used. 

The next step is the calculation of the relative intensities of the 

analyte and internal standard line for the unknowns and standards. 

Using the ratio of the relative intensities of the standards and internal 

standards a curve is plotted. 	Such a curve is shown in Fig. A.4-4 and 

knowing the relative intensity ratios of the unknowns, their concentra-

tion can be determined. 

The analysis was performed by carefully transferring an ion exchange 

particle to a small polythene container after the mass transfer experi-

ments. The water adhering to the particles was soaked with a clean 

tissue, and transferred to a weighted graphite electrode, which had a 

3 mm crater at one of its ends for the containment of samples. The 

particles and the electrode were then weighed to determine the weight of 

the particle. 	Then about 2 to 3 mg of spectrographically pure 

CuSO4  was added to the electrode and weighed to determine the weight of 

CuSO4 added. 	The comparative standards were prepared by injecting a 

known amount of Na2SO4 solution on the CuSO4. 	For reproducible 

-results grinding of,the CuSO4 granules to fine powder was necessary. 

The standards were then dried and weighed. The electrodes were then 

mounted on an E 492 quartz Hilger and Watts spectrograph one after another 

and arced. 	The electrode containing the samples formed the bottom elec- 

trode and a 60°  coned graphite electrode formed the top electrode with 

a 2mm gap betWeen them. A 4.5 amp DC arc with 10 sec exposure time 

was used in arcing. 	The preliminary curves were obtained by touching 

the electrodes with bare hand which had sufficient sodium and a step sec- 

tor used to obtain a series of suitable spectrograms. 	An Ilford R-40 

plate in the visible range was used. 	A 3 minute developing time in 

caustic-hydroquinone at 18°C, 15 minutes fixing time using Kodafix rapid-

. 
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fixer and 15 minutes washing time in tap water was found suitable for the 

purpose. 
• 

A general reference to spectrochemical analysis may be found in ref-

erence (69). 
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A.5. Cglculated experimental data 

Fluidized bed data Table A.5-1 to A.5-8. 

Table A.5-1 

	

Reo 	= 	56.16 

	

d 	= 	0.106 	cm 

VB 	= 	4.71 	cm3  

ps 	= 	1.23 	gm/cm3  

Res ' Sh Sc im  imt  

4.23 0.443 	0.00616 31.04 424.26 0.976 0.433 

5.09 0.469 	0.00634 31.92 424.29 0.834 0.391 

* 7.35 0.525 	0.00702 35.36 424.04 0.640 0.336 

10.09 0.575 	0.00735 36.99 424.08 0.488 0.281 

14.97 0.655 	0.00776 39.07 424.11 0.347 0.228 

22.96 0.751 	0.00825 41.56 424.14 0.241 0.181 

jm  = 3.55 Re
0.859  

* Data above the asterisk symbol were not used for correlation. 
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Table A.5-2a 

	

Re
o 	

43.72 

	

d 	0.0938 cm 

	

V
B 	

= 5.65 	cm3 

= 1.23 gm/cm3  

Re
s 

Sh Sc 3m  

4.00 0.488 0.00613 27.36 424.71 0.910 0.444 

4.54 0.486 0.00653 29.12 424.50 0.854 0.415 

5.50 0.526 0.00671 29.93 424.77 0.724 0.381 

7.39 0.581 0.00724 32.26 424.60 0.581 0.338 

* 8.92 0.613 0.00735 32.78 424.86 0.489 0.300 

10.62 0.637 0.00757 33.76 424.88 0.423 0.269 

10.62 0.647 0.00757 33.75 424.66 0.423 0.274 

13.32 0.687 0.00785 35.02 424.68 0.350 0.240 

15.22 0.748 0.00803 35.82 424.93 0.313 0.234 

'16.04 0.729 .0.00814 36.30 424.70 0.301 0.219 

17.81 0.766 0.00827 36.87 424.71 0.275 0.211 

20.35 0.799 0.00835 37.27 424.95 0.244 0.195 

22.22 0.810 0.00855 38.11 424.73 0.228 0.185 

jm 	3.118 Re-0.844 

* Data above asterisk symbol were not used for correlation. 
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Table A.5-2b 

Reo = 43.72 

d = 0.0938 cm 

VB = 5.62 	cm3  

ps = 1.23 	gm/cm3  

Res KO  Sh Sc jm  

2.22 0.452 0.00505 22.52 424.24 1.350 0.610 

3.54 0.491 0.00546 24.31 424.37 0.914 0.449 

3.94 0.465 0.00563 25.09 424.39 0.847 0.394 

5.43 0.544 0.00659 29.37 424.43 0.719 0.391 

6.52 0.574 0.00692 30.83 424.46 0.630 0.362 

7.38 0.588 0.00714 31.81 424.48 0.574 0.338 

8.14 0.644 0.00736 32.83 424.68 0.537 0.346 

* 8.86 0.656 0.00746 33.27 424.69 0.500 0.328 

9.59 0.671 0.00747 33.32 424.71 0.462 0.310 

10.59 0.686 0.00770 34.35 424.72 0.432 0.296 

11.42 0.708 0.00775 34.57 424.73 0.403 0.285 

im  = 3.118 Re-s
0.840  

* Data above asterisk symbol were not used for correlation. 
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Table A.5-3 

• Re
o 	

29.98 

d .  = 0.0650 cm 

4.64 	cm3  

p
s  = 1.32 	gm/cm3  

Re
s 

c ITC  Sh Sc 
jm il 

1.40 0.481 0.00665 18.15 336.31 1.861 0.896 

1.62 0.481 0.00683 18.65 336.36 • 1.656 Q.797 

1.78 0.481 0.00687 18.75 336.39 1.515 0.729 

1.99 0.481 0.00718 19.59 336.42 1.419 0.683 

2.24 0.481 0.00680 18.57 336.48 1.919 0.573 

2.89 0.486 0.00748 20.42 336.53 1.015 0.493 

3.54 .0.519 0.00753 20.52 335.70 0.833 0.433 

* 5.13 0.569 0.00868 23.65 335.75 0.664 0.378 

6.51 0.624 0.00915 24.93 335.77 0.551 0.344 

7.58 0.645 0.00922 25.12 335.79 0.477 0.308 

9.64 0.702 0.00958 26.12 335.81 0.390 0.274 

10.45 0.726 0.00981 26.75 336.02 0.368 0.267 

11.15 0.734 0.00989 26498 336.02 0.348 0.256 

11.89 0.747 0.01010 27.54 336.03 0.333 0.249 

12.90 0.770 0.01004 27.39 336.04 0.305 0.235 

16.07 0.821 0.01083 29.50 335.57 0.264 0.217 

20.80 0.892 0.01095 29.84 335.58 0.206 0.184 

jm  = 2.567 Re-0.827  

* Data above asterisk symbol were not used for correlation. 
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Table A.5-4  

Re
o 

= 21.41 

d' = 0.0669 cm 
VB = 5.26 	cm 3 

Ps 	
1.23 	gm/cm3  

Re
s 

c 7C  Sh Sc jm  it  m 

1.19 0.475 0.00450 14.30 424.59 1.601 0.761 

1.26 0.534 0.00481 15.27 423.49 1.611 0.860 

1.37 0.526 0.00415 13.21 424.52 1.283 0.675 

1.58 0.518 0.00447 14.21 424.55 1.197 0.620 

1.81 0.511 0.00546 17.36 424.71 1.275 0.652 

1.86 0.561 0.00466 14.78 423.61 1.060 0.595 

1.90 0.518 0.00479 15.24 424.61 1.066 0.552 

2.17 0.515 0.00516 16.42 424.63 1.008 0.519 

2.43 0.534 0.00565 17.96 424.83 0.985 0.526 

* 2.82 0.562 0.00624 19.82 423.70 0.937 0.526 

3.92 0.614 0.00690 21.89 423.76 0.744 0.457 

4.65 0.638 0.00715 22.69 423.80 0.649 0.414 

5.22 0.682 0.00704 22.34 423.78 0.570 0.389 

9.42 0.786 0.00788 25.03 423.86 0.354 0.278 

11.83 0.841 0.00828 26.28 423.75 0.296 0.249 

12.67 0.858 0.00862 27.36 423.76 0.288 0.247 

13.38 0.862 0.00855 27.15 423.76 0.270 0.233 

13.80 0.864 0.00859 27.25 423.48 0.263 0.227 

14.50 0.887 0.00866 27.47 423.49 0.252 0.224 

15.15 0.903 0.00869 27.56 423.49 0.242 0.219 

15.63 0.894 0.00902 28.59 422.97 0.244 0.218 

16.15 0.920 0.00888 28.15 423.50 0.232 0.214 

16.30 0.923 0.00899 28.48 423.03 0.233 0.215 

17.74 0.939 0.00922 29.20 423.04 0.219 0.206 

im  = 2.188 Re
:0.805 

* Data above asterisk synbol were not used for correlation. 
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Re
o 

= 20.35 

d = 0.0669 CM" 

Table A.5-5 

9 .07 

1.2 

cm3 

gm/cm3  

Re
s 

C c Sh Sc .i m  Tn  

2.47 0.565 0.00599 19.60 451.66 1.032 0.584 

2.61 0.573 0.00633 20.68 451.66 1.031 0.591 

2.67 0.577 0.00642 20.98 451.66 1.026 0.591 

4.34 0.662 0.00678 22.17 451.66 0.666 0.441 

4.53 0.669 0.00672 21.97 451.66 0.633 0.423 

9.21 0.824 0.00755 24.70 451.66 0.349 0.288 

9.39 0.824 0.00839 27.42 451.66 0.381 0.314 

im  = 2.204 Re 0.8"  
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Table A.5-6 

Re
o 

= 20.09 

d = 0.0581 cm,  

	

=. 4.23 	cm 3 

Ps 	1.32 	gm/cm3  

Re 

1.65 0.473 

c 

0.00503 

Sh 

13.88 

Sc 

423.88 

im 

1.119 

jm 

0.530 

1.90 0.493 0.00520 14.35 423.92 1.008 0.497 

2.50 0.542 0.00525 14.49 424.00, 0.773 0.419 

* 2.80 0.567 0.00605 16.71 424.69 0.795 0.450 

3.42 0.594 0.00651 17.97 424.02 0.701 0.416 

4.03 0.630 0.00671 18.50 424.77 0.612 0.386 

4.05 0.632 0.00675 18.66 424.73 0.614 0.388 

5.02 0.662 0.00697 19.27 424.77 0.511 0.338 

5.53 0.681 0.00712 19.69 424.83 0.474 0.323 

5.99 0.703 0.00708 19.56 424.12 0.435 0.306 

7.11 0.734 0.00740 20.46 424.83 0.383 0.281 

8.81 0.786 0.00767 21.22 424.86 0.321 0.252 

9.95 0.808 0.00797 22.00 424.18 0.294 0.238 

11.04 0.829 0.00807 22.32 424.64 0.269 0.223 

-11.64 0.845 0.00808 22.34 424.89 0.255 0.216 

im  = 1.874 Re
-0.809 

* Data above asterisk symbol were not used for correlation. 
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= 8.40 

Table A.5-7 

d = 0.0396 cm 

VB  = 4.46 cm3 

ps  = 1.32 $m/cm3  

Re
s 

E c . 	Sh Sc Jul  ji;1  

1.68 0.645 0.00671 12.62 424.22 0.998 0.644 

1.91 0.654 0.00680 12.82 425.22 0.895 0.585 

2.75 0.728 0.00763 14.36 424.38 0.695 0.507 

3.44 0.768 0.00794 14.98 425.43 0.580 0.445 

3.77 0.799 0.00835 15.73 424.46 0.556 0.444 

4.07 0.800 0.00824 15.55 425.48 0.509 0.407 

4.49 0.839 0.00877 16.51 424.50 0.490 0.411 

5.20 0.872 0.00879 16.60 425.54 0.425 0.370 

5.63 0.901 0.00921 17.35 424.56 0.410 0.370 

,.. 	6.43 0.923 .0.00940 17.75 425.59 0.367 0.339 

jm  = 1.457 Re 0.739  
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Table A.5-8  

Ref. Table Re
o 

q-1 B
o 

N 
predicted 

N
e
xp
t. 

A.5-1 56.16 -0.859 0.837 2.97 3.16 

A.5-2a 43.72 -0.844 0.850 3.05 3.16 

A.5-2b 43.72 -0.840 0.862 3.05 3.67 

A.5-3 29.98 -0.827 0.843 3.17 3.15 

A.5-4 21.41 -0.805 0.860 3.28 3.59 

A.5-5 20.35 -0.809 0.868 3.29 3.50 

• A.5-6 20.09 -0.809 0.742 3.30 3.56 

A.5-7 8.4 -0.739 0.877 3.60 3.60 
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• 

Table A.5-9  

Single particle results 

d 

CM 

T 

C 
• Ps 	, 

gm/cm3  

Reo  Te103  

cm/sec 

Sh Sc 

0.0402 24.1 1.28 7.18 	6.04 11.75 440.83 0.215 

0.0626  23.8 1.28 20.53 	8.63 26.2.8 447.09 0.167 

0.0735 24.0 1.28 30.35 	8.61 30.67 443.47 0.133 

0.1443 23.8 1.20 94.66 	10.26 72.00 447.09 0.100 

0.0418 23.7 1.28 8.41 	7.43 15.11 448.00 0.235 

0.0619 24.7 1.28 20.67 	9.18 27.18 430.40 0.174 

0.0489 24.3 1.28 11.63 	7.83 18.46 437.33 0.209 

0.0980 24.7 1.20 42.60 	7.94 37.23 430.40 0.116 

0.0646 '24.3 1.28 22.12 	8.38 26.08 437.33 0.155 

0.0377 24.6 1.28 6.67 - 	10.57 19.12 432.08 0.379 

0.1405 24.7 1.20 90.61 	6.68 44.88 429.54 0.066 

0.6634 24.7 1.28 23.19 	7.57 24.05 430.40 0.137 

0.1023 25.0 1.20 47.07 	6.53 31.53 426.12 0.089 

0.0544 24.9 1.28 15.36 	8.97 22.69 426.97 0.196 

0.1270 24.9 1.20 15.24 • 	8.34 51.82 426.97 0.092 

0.0448 24.9 1.28 10.32 	9.34 20.40 427.82 0,262 

0.0991 24.8 1.20 45.23 	8.11 39.22 428.68 0.115 
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A.6. 	Sample of particle properties  

A typical particle size distribution is shown in Fig. A.6-1. 	The 

surface averaged mean diameter of this sample is 0.0950 cm and the stand-

dard deviation is ±0.0044. Since the average of the population is not 

known a 't' test was made to estimate the deviation of the population mean 

from the sample mean. For 95% confidence limit the population mean is 

within 1.8% of the sample mean. 

Fig. A.6-2 shows the variation of resin diameter with loading. In 

the figure Q denotes resin loading, i.e. the ratio of the amount of 

Na
+ 

in the particle to the total capacity of the particle and d
Q 

denotes 

the ratio of diameter of particle in H.+  form to that of mixed i.e. 

(H,Na) form. 	The density of particles were calculated determining 

particle terminal Reynolds number Re
o and using the correlation (64) 

Ga = 18 Re
o 
+ 2.7 Re

o
1.687 	

for 3.6 < Ga < 105  

where 

Ga 
d3  p(ps  - p) g 

and is known as the Galileo number. 

 

p2 , 

Here ps  is the density of the particle. 
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Fig. A.6-1 : A typical histogram of particle diameter: 
4.75 to 6.25 microscope intervals 
... 0.0254 cm 
Mean diameter of sample 0.0950 cm 
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1.022 

1.02 

Fig. A.6-2 : variation of resin diameter 
with loading in about 
10-2  (N) NaOH solution. 
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