7 research outputs found

    The VST Early-type GAlaxy Survey: Exploring the Outskirts and Intra-cluster Regions of Galaxies in the Low-surface-brightness Regime

    Full text link
    The VST Early-type GAlaxy Survey (VEGAS) is a deep, multi-band (u, g, r, i) imaging survey, carried out with the 2.6-metre VLT Survey Telescope (VST) at ESO's Paranal Observatory in Chile. VEGAS combines the wide (1-square-degree) OmegaCAM imager and long integration times, together with a specially designed observing strategy. It has proven to be a gold mine for studies of features at very low surface brightness, down to levels of mu_g~27-30 magnitudes arcsec^(-2), over 5-8 magnitudes fainter than the dark sky at Paranal. In this article we highlight the main science results obtained with VEGAS observations of galaxies across different environments, from dense clusters of galaxies to unexplored poor groups and in the field.Comment: Published in The Messenger, vol. 183, p. 25-2

    Galaxy populations in the Hydra i cluster from the VEGAS survey:I. Optical properties of a large sample of dwarf galaxies

    Get PDF
    At ~50 Mpc, the Hydra I cluster of galaxies is among the closest cluster in the z=0 Universe, and an ideal environment to study dwarf galaxy properties in a cluster environment. We exploit deep imaging data of the Hydra I cluster to construct a new photometric catalog of dwarf galaxies in the cluster core, which is then used to derive properties of the Hydra I cluster dwarf galaxies population as well as to compare with other clusters. Moreover, we investigate the dependency of dwarf galaxy properties on their surrounding environment. The new Hydra I dwarf catalog contains 317 galaxies with luminosity between -18.5<MrM_r<-11.5 mag, a semi-major axis larger than ~200 pc (a=0.84 arcsec), of which 202 are new detections, previously unknown dwarf galaxies in the Hydra I central region. We estimate that our detection efficiency reaches 50% at the limiting magnitude MrM_r=-11.5 mag, and at the mean effective surface brightness μe,r\overline{\mu}_{e,r}=26.5 mag/arcsec2arcsec^2. We present the standard scaling relations for dwarf galaxies and compare them with other nearby clusters. We find that there are no observational differences for dwarfs scaling relations in clusters of different sizes. We study the spatial distribution of galaxies, finding evidence for the presence of substructures within half the virial radius. We also find that mid- and high-luminosity dwarfs (MrM_r<-14.5 mag) become on average redder toward the cluster center, and that they have a mild increase in ReR_e with increasing clustercentric distance, similar to what is observed for the Fornax cluster. No clear clustercentric trends are reported with surface brightness and S\'ersic index. Considering galaxies in the same magnitude-bins, we find that for high and mid-luminosity dwarfs (MrM_r<-13.5 mag) the g-r color is redder for the brighter surface brightness and higher S\'ersic n index objects.Comment: Accepted for publication in A&A. 25 pages, 21 figure

    Galaxy populations in the Hydra I cluster from the VEGAS survey:I. optical properties of a large sample of dwarf galaxies

    No full text
    Abstract Context: Due to their relatively low stellar mass content and diffuse nature, the evolution of dwarf galaxies can be strongly affected by their environment. Analyzing the properties of the dwarf galaxies over a wide range of luminosities, sizes, morphological types, and environments, we can obtain insights about their evolution. At ∼50 Mpc, the Hydra I cluster of galaxies is among the closest cluster in the z ≃ 0 Universe, and an ideal environment to study dwarf galaxy properties in a cluster environment. Aims: We exploit deep imaging data of the Hydra I cluster to construct a new photometric catalog of dwarf galaxies in the cluster core, which is then used to derive properties of the Hydra I cluster dwarf galaxy population as well as to compare it with other clusters. Moreover, we investigate the dependency of dwarf galaxy properties on their surrounding environment. Methods: The new wide-field g- and r-band images of the Hydra I cluster obtained with the OmegaCAM camera on the VLT Survey Telescope (VST) in the context of the VST Early-type GAlaxy Survey (VEGAS) were used to study the dwarf galaxy population in the Hydra I cluster core down to r-band magnitude Mr = −11.5 mag. We used an automatic detection tool to identify dwarf galaxies from a ∼1 deg² field centered on the Hydra I core, covering almost half of the cluster virial radius. The photometric pipeline was used to estimate the principal photometric parameters for all targets. Scaling relations and visual inspection were used to assess the cluster membership and construct a new dwarf galaxy catalog. Finally, based on the new catalog, we studied the structural (Sérsic index n, effective radius Re, and axis ratio) and photometric (colors and surface brightness) properties of the dwarf galaxies, also investigating how they vary as a function of clustercentric distance. Results: The new Hydra I dwarf catalog contains 317 galaxies with a luminosity between −18.5 &lt; Mr &lt; −11.5 mag, a semi-major axis larger than ∼200 pc (a = 0.84″), of which 202 are new detections, and previously unknown dwarf galaxies in the Hydra I central region. We estimate that our detection efficiency reaches 50% at the limiting magnitude Mr = −11.5 mag, and at the mean effective surface brightness μ̄e,r = 26.5 mag arcsec−2. We present the standard scaling relations for dwarf galaxies, which are color-magnitude, size-luminosity, and Sérsic n-magnitude relations, and compare them with other nearby clusters. We find that there are no observational differences for dwarfs scaling relations in clusters of different sizes. We study the spatial distribution of galaxies, finding evidence for the presence of substructures within half the virial radius. We also find that mid- and high-luminosity dwarfs (Mr < −14.5 mag) become, on average, redder toward the cluster center, and that they have a mild increase in Re with increasing clustercentric distance, similar to what is observed for the Fornax cluster. No clear clustercentric trends are reported for surface brightness and Sérsic index. Considering galaxies in the same magnitude bins, we find that for high and mid-luminosity dwarfs (Mr &lt; −13.5 mag), the g − r color is redder for the brighter surface brightness and higher Sérsic n index objects. This finding is consistent with the effects of harassment and/or partial gas stripping

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore