126 research outputs found

    The Cranked Nilsson-Strutinsky versus the Spherical Shell Model: A Comparative Study of pf-Shell Nuclei

    Full text link
    A comparative study is performed of a deformed mean field theory, represented by the cranked Nilsson-Strutinsky (CNS) model, and the spherical shell model. Energy spectra, occupation numbers, B(E2)-values, and spectroscopic quadrupole moments in the light pf shell nuclei are calculated in the two models and compared. The result is also compared to available experimental data which are generally well described by the shell model. Although the Nilsson-Strutinsky calculation does not include pairing, both the subshell occupation numbers and quadrupole properties are found to be rather similar in the two models. It is also shown that ``unpaired'' shell model calculations produce very similar energies as the CNS at all spins. The role of the pairing energy in the description of backbending and signature splitting in odd-mass nuclei is also discussed.Comment: 14 pages, 20 figures, submitted to Phys.Rev.

    Polarization Effects in Superdeformed Nuclei

    Get PDF
    A detailed theoretical investigation of polarization effects in superdeformed nuclei is performed. In the pure harmonic oscillator potential it is shown that when one particle (or hole) with the mass single-particle quadrupole moment q_{nu} is added to a superdeformed core, the change of the electric quadrupole moment can be parameterized as q_{eff}=e(bq_{nu}+a), and analytical expressions are derived for the two parameters, aa and bb. Simple numerical expressions for q_{eff}(q_\nu}) are obtained in the more realistic modified oscillator model. It is also shown that quadrupole moments of nuclei with up to 10 particles removed from the superdeformed core of 152Dy can be well described by simply subtracting effective quadrupole moments of the active single-particle states from the quadrupole moment of the core. Tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A 150-region.Comment: 28 pages including 9 figure

    Symmetrier i atomkärnans värld : Om roterande atomkärnors egenskaper och existensen av supertunga atomkärnor.

    Get PDF

    Interpretation of the large-deformation high-spin bands in select A=158-168 nuclei

    Get PDF
    The high-spin rotational bands in Hf-168 and the triaxial bands in Lu nuclei are analyzed using the configuration-constrained cranked Nilsson-Strutinsky (CNS) model. Special attention is given to the up-sloping extruder orbitals. The relative alignment between the bands which appear to correspond to triaxial shape is also considered, including the yrast ultrahigh-spin band in Er-158. This comparison suggests that the latter band is formed from rotation around the intermediate axis. In addition, the standard approximations of the CNS approach are investigated, indicating that the errors which are introduced by the neglect of off-shell matrix elements and the cutoff at nine oscillator shells (N-max = 8) are essentially negligible compared to other uncertainties. On the other hand, the full inclusion of the hexadecapole degree of freedom is more significant; for example it leads to a decrease of the total energy of similar to 500 keV in the triaxial superdeformed (TSD) region of Hf-168

    Triaxiality in 48Cr

    Full text link
    Rotational behavior inducing triaxiality is discussed for 48Cr in the cranked Nilsson-Strutinsky (CNS) model, as well as in the spherical shell model. It is shown that the low-spin region up to about I=8, has a prolate well-deformed shape. At higher spins the shape is triaxial with a "negative-gamma" deformation, that is, with rotation around the classically forbidden intermediate axis. By comparing calculated B(E2)-values and spectroscopic quadrupole moments in the CNS with spherical shell model results and experimental data, the triaxial rotation around the intermediate axis is confirmed.Comment: 9 pages, including 6 figures; submitted to Physics Letters
    corecore