A detailed theoretical investigation of polarization effects in superdeformed
nuclei is performed. In the pure harmonic oscillator potential it is shown that
when one particle (or hole) with the mass single-particle quadrupole moment
q_{nu} is added to a superdeformed core, the change of the electric quadrupole
moment can be parameterized as q_{eff}=e(bq_{nu}+a), and analytical expressions
are derived for the two parameters, a and b. Simple numerical expressions
for q_{eff}(q_\nu}) are obtained in the more realistic modified oscillator
model. It is also shown that quadrupole moments of nuclei with up to 10
particles removed from the superdeformed core of 152Dy can be well described by
simply subtracting effective quadrupole moments of the active single-particle
states from the quadrupole moment of the core. Tools are given for estimating
the quadrupole moment for possible configurations in the superdeformed A
150-region.Comment: 28 pages including 9 figure