14 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationDifferent cell types have unique combinations of ion channels and receptors that define their physiological function. Combinations of ion channel and receptor isoforms may change in a cell-specific manner with disease progression. Thus, it is essential to design a general platform to investigate the descriptive properties of cell types and understand their role in health and disease. In this dissertation, I contributed to constellation pharmacology, a platform to assess phenotypic properties of individual cell types based on the combinations (constellations) of ion channels and receptors expressed in the plasma membrane. To validate the platform, major cell types were identified in the pacemaking circuit of mice ventral respiratory column (VRC), a region that generates and maintains respiratory rhythm. The cell-specific constellations of three major cell types were characterized and the properties of putative inspiratory neurons were examined in intact brainstem slice preparations by electrophysiological recordings. This work revealed new neuromodulators of the respiratory pacemaking circuit that were validated using intact slice preparations. To test the application of constellation pharmacology in identifying molecular changes in disease states, the molecular correlates of neuropathic pain were investigated. Concerted multivalent molecular changes were observed in the sensory neurons of rat dorsal root ganglia following chronic constriction injury and sciatic nerve ligation injury that resulted in the appearance of aberrant neuronal phenotypes, which upregulated with the progression of pain states. This work demonstrated the strength of constellation pharmacology in monitoring neuronal phenotypes with the progression of disease states. Constellation pharmacology requires the use of target selective pharmacological tools to uncover the combinations of ion channels and receptors in cell membrane. The ion channels and receptors exist in complex heteromeric isoforms for which selective pharmacological tools are not well explored. The applicability of this platform to screen for novel bioactive marine natural products with potential for targeting these ion channel isoforms was demonstrated by identifying novel neuroactive peptides from a new superfamily of snails, Crassispiridae. Thus, in this dissertation, I establish the application of constellation pharmacology to 1) describe different cellular phenotypes based on the membrane constellations, 2) investigate changes to cellular phenotypes in pathological conditions and 3) discover bioactive marine natural products

    Die Ballon-Okklusionsangiographie der Pulmonalarterien bei chronischer pulmonaler Hypertonie

    Get PDF
    Die chronische pulmonale Hypertonie ist eine seltene Erkrankung, die heute noch als unheilbar gilt. Die therapeutischen Möglichkeiten haben sich in den letzten Jahren rasant weiterentwickelt und orientieren sich an der Pathogenese und an den Befunden aus der bildgebenden Diagnostik. Diese muss in ihren Möglichkeiten der differentialdiagnostischen Eingrenzung zugrundeliegender Ursachen der pulmonalen Hypertonie Schritt halten. Insbesondere die Ergebnisse der intraarteriellen Pulmonalisangiographie als Referenzmethode in der Bildgebung der Lungen-strombahn haben meist unmittelbare therapeutische Konsequenz, z.B. ob ein Patient für eine pulmonale Thrombendarteriektomie gegeignet ist oder nicht. Wir haben überprüft, ob die selektive pulmonale Ballon-Okklusionsangiographie als Erweiterung der standardisierten Übersichtsangiographie die Differentialdiagnose z.B. der embolischen (CTEPH) gegenüber der nichtembolischen (NoCTEPH) Erkrankung verbessert. Zu diesem Zweck wurden Untersuchungen von 50 Patienten bestehend aus jeweils einer konventionellen Übersichtsangiographie und der ergänzenden Ballon-Okklusionsangiographie retrospektiv nach einem standardisierten Studienprotokoll ausgewertet. Zunächst wurde eine digitale Subtraktionsangiographie der Pulmonalarterien angefertigt. Anschließend führten wir einen weichen Latex-Ballonkatheter in Segment- oder Subsegmentarterien ein. Dann entfalteten wir den Ballon, um die sondierte Arterie zu verschließen und injizierten jeweils 10 bis 15 ml Kontrastmittel, um die kleinen peripheren Gefäße sichtbar zu machen. 13 Patienten litten an einer nichtthrombembolischen Form der chronischen pulmonalen Hypertonie. Bei 36 von 37 Patienten mit CTEPH fanden wir organisiertes embolisches Material als irreguläre Stenosen, Verschlüsse oder Strickleitersysteme (Webs und Bands). In der Darstellung dieser pathologischen Befunde war die Ballon-Okklusionsangiographie der Übersichtsangiographie sowohl qualitativ als auch quantitativ überlegen. Nach unseren Daten entdeckt die Ballon-Okklusionsangiographie in etwa bei jedem fünften Patienten mit negativer Übersichtsangiographie wenigstens ein thrombembolisches Residuum, sie steigert somit als Verfeinerung der Methode die Sensitivität der Pulmonalisangiographie. Generell stellte sie 2,7 bis 3,6 Aufteilungsgenerationen der peripheren Gefäße mehr dar als die konventionelle selektive DSA. Außerdem fanden wir bei 17 Patienten Kollateralgefäße zu den peripheren Segmenten von zentral verschlossenen Pulmonal-arterien. Dieses Phänomen war nur in der Ballon-Okklusionsangiographie zu beobachten und erwies sich als spezifisch für Patienten mit thrombembolischer pulmonaler Hypertonie. Der Befund ist insofern erstaunlich, als dass Pulmonalarterien eigentlich als funktionelle Endarterien ohne Anastomosen zu Nachbararterien beschrieben werden. Bei 11 Patienten fanden sich Anastomosen zu subpleuralen Bronchialarterien. Dieses bereits bekannte Phänomen steht nach unseren Daten in keinem Zusammenhang mit einer bestimmten Erkrankung und ist somit als unspezifisches Merkmal der chronischen pulmonalen Hypertonie zu deuten. In drei Fällen konnten histologisch postkapilläre Formen der pulmonalen Hypertonie (zweimal pulmonale veno-okklusive Erkrankung (PVOD), einmal primäre kapilläre Hämangiomatose) gesichert werden. Bei diesen Patienten zeigte die Ballon-Okklusionsangiographie eine Füllung der Lungenvenen ohne angiographisch sichtbare Anfärbung des Kapillarbettes (fehlende Parenchymanfärbung). Die geschilderten Erkenntnisse aus unserer Studie lassen sich für die Praxis wie folgt zusammenfassen: 1. Die Ballon-Okklusionsangiographie verbessert die Visualisierung der peripheren Pulmonalarterien. 2. Sie erleichtert die Detektion und Lokalisation thrombembolischer Residuen 3. Sie hilft bei der Differentialdiagnose zwischen thrombembolischer und nicht-thrombembolischer chronischer pulmonaler Hypertonie. 4. Vorher unsichtbare Anastomosen und Kollateralgefäße werden sichtbar. 5. Venöse Füllung ohne Parenchymanfärbung ist offensichtlich ein Zeichen der Parenchymerkrankung; diese Konstellation ist bei Patienten mit chronischer pulmonaler Hypertonie möglicherweise ein Hinweis auf das Vorliegen der pulmonalen venookklusiven Erkrankung (PVOD) oder der primären kapillären Hämangiomatose (PCH). 6. Die selektive Ballon-Okklusionsangiographie segmentaler Pulmonalarterien verbessert in Zusammenschau mit der Computertomographie die Zuverlässigkeit in der Selektion von Kandidaten für eine pulmonale Thrombendarteriektomie oder eine Prostazyklintherapie.Purpose: Test the ability of selective balloon occlusion angiography of pulmonary segmental arteries in the differential diagnosis of chronic pulmonary hypertension: embolic vs. non-embolic disease, pulmonary capillary hemangiomatosis, and venoocclusive disease. Methods and Materials: In 50 patients with pulmonary hypertension, digital subtraction angiography (DSA) of pulmonary arteries were used to assist in the selection of candidates appropriate for thrombo-endarterectomy. In addition to these standard methods, we introduced a soft latex balloon catheter into segmental arteries, inflated the balloon to occlude the artery, and injected 10 to 15 ml contrast medium to visualize small peripheral vessels as completely as possible. Results: 13 patients suffered from non-embolic pulmonary hypertension. In 36 of 37 patients with embolic pulmonary hypertension organizing embolic material was depicted as irregular narrowing or occlusion of pulmonary arteries, and weblike strictures. In all of these patients occlusion technique revealed more tiny webs or organized micro emboli in small peripheral arteries. According to our data balloon occlusion angiography discovers in every fifth patient showing a negative conventional pulmonary angiography at least one thromboembolic residuum and thus increases as a sophisticated method the sensitivity of the pulmonary angiography. Generally, occlusion technique revealed additional 2,7 to 3,6 ramifications of peripheral vessels in comparison to conventional selective DSA. Unexpectedly, we found in 11 patients anastomoses to bronchial arteries and in 17 patients collateral vessels to the peripheral segments of centrally occluded pulmonary arteries. These findings are astonishing, because pulmonary arteries are believed ramifying dichotomically without anastomoses. Obviously, there are alterations of pulmonary perfusion, which overcome normal anatomy. 3 patients with characteristic CT signs of interstitial disease (poorly defined nodular opacities and septal lines) underwent lung biopsy: 2 cases of venoocclusive disease, 1 case of pulmonary capillary hemangiomatosis. Occlusion angiography in these 3 patients revealed filling of veins without opacification of capillaries (failing parenchymal phase). Conclusion: Balloon occlusion technique improves the visualization of peripheral pulmonary arteries. Differential diagnosis of embolic and non-embolic pulmonary hypertension is facilitated. Previously invisible anastomoses and collateral vessels become visible. Venous filling without capillary opacification is apparently a sign of parenchymal disease; in patients with chronic pulmonary hypertension it might be a hint at venoocclusive disease or pulmonary capillary hemangiomatosi

    An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses

    No full text
    Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca]i. Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca]i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ–low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population

    Conotoxin κM-RIIIJ, a tool targeting asymmetric heteromeric Kv1 channels

    No full text
    The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this zone of ignorance in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets asymmetric Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues

    Structure and biological activity of a turripeptide from Unedogemmula bisaya venom

    No full text
    The turripeptide ubi3a was isolated from the venom of the marine gastropod Unedogemmula bisaya, family Turridae, by bioassay-guided purification; both native and synthetic ubi3a elicited prolonged tremors when injected intracranially into mice. The sequence of the peptide, DCCOCOAGAVRCRFACC-NH2 (O = 4-hydroxyproline) follows the framework III pattern for cysteines (CC-C-C-CC) in the M-superfamily of conopeptides. The three-dimensional structure determined by NMR spectroscopy indicated a disulfide connectivity that is not found in conopeptides with the cysteine framework III: C-1-C-4, C-2-C-6, C-3-C-5. The peptide inhibited the activity of the alpha 9 alpha 10 nicotinic acetylcholine receptor with relatively low affinity (IC50, 10.2 mu M). Initial Constellation Pharmacology data revealed an excitatory activity of ubi3a on a specific subset of mouse dorsal root ganglion neurons

    (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology.

    No full text
    Chronic pain affects the life of millions of people. Current treatments have deleterious side effects. We have advanced a strategy for targeting protein interactions which regulate the N-type voltage-gated calcium (CaV2.2) channel as an alternative to direct channel block. Peptides uncoupling CaV2.2 interactions with the axonal collapsin response mediator protein 2 (CRMP2) were antinociceptive without effects on memory, depression, and reward/addiction. A search for small molecules that could recapitulate uncoupling of the CaV2.2-CRMP2 interaction identified (S)-lacosamide [(S)-LCM], the inactive enantiomer of the Food and Drug Administration-approved antiepileptic drug (R)-lacosamide [(R)-LCM, Vimpat]. We show that (S)-LCM, but not (R)-LCM, inhibits CRMP2 phosphorylation by cyclin dependent kinase 5, a step necessary for driving CaV2.2 activity, in sensory neurons. (S)-lacosamide inhibited depolarization-induced Ca influx with a low micromolar IC50. Voltage-clamp electrophysiology experiments demonstrated a commensurate reduction in Ca currents in sensory neurons after an acute application of (S)-LCM. Using constellation pharmacology, a recently described high content phenotypic screening platform for functional fingerprinting of neurons that uses subtype-selective pharmacological agents to elucidate cell-specific combinations (constellations) of key signaling proteins that define specific cell types, we investigated if (S)-LCM preferentially acts on certain types of neurons. (S)-lacosamide decreased the dorsal root ganglion neurons responding to mustard oil, and increased the number of cells responding to menthol. Finally, (S)-LCM reversed thermal hypersensitivity and mechanical allodynia in a model of postoperative pain, and 2 models of neuropathic pain. Thus, using (S)-LCM to inhibit CRMP2 phosphorylation is a novel and efficient strategy to treat pain, which works by targeting specific sensory neuron populations.Arizona Health Science Center; American Heart Association [SDG5280023]; Department of Defense Congressionally Directed Military Medical Research and Development Program [NF1000099]; Children's Tumor Foundation NF1 Synodos grant [2015-04-009A]; Children's Tumor Foundation; Flinn Scholarship; University of Arizona Undergraduate Biology Research Program; University of Arizona Undergraduate Honors College; University of Arizona Neuroscience and Cognitive Science Undergraduate fund; Medical Student Research Program from the National Institutes of Health12 month embargoThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons

    No full text
    Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)­ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions
    corecore