114 research outputs found

    Design and Development IoT based Smart Energy Management Systems in Buildings through LoRa Communication Protocol

    Get PDF
    Energy management is a vital tool for reducing significant supply-side deficits and increasing the efficiency of power generation. The present energy system standard emphasizes lowering the total cost of power without limiting consumption by opting to lower electricity use during peak hours. The previous problem necessitates the development and growth of a flexible and mobile technology that meets the needs of a wide variety of customers while preserving the general energy balance. In order to replace a partial load decrease in a controlled manner, smart energy management systems are designed, according to the preferences of the user, for the situation of a full power loss in a particular region. Smart Energy Management Systems incorporate cost-optimization methods based on human satisfaction with sense input features and time of utilization. In addition to developing an Internet of Things (IoT) for data storage and analytics, reliable LoRa connectivity for residential area networks is also developed. The proposed method is named as LoRa_bidirectional gated recurrent neural network (LoRa_ BiGNN) model which achieves 0.11 and 0.13 of MAE, 0.21 and 0.23 of RMSE, 0.34 and 0.23 of MAPE for heating and cooling loads

    A Novel Cryptography-Based Multipath Routing Protocol for Wireless Communications

    Get PDF
    Communication in a heterogeneous, dynamic, low-power, and lossy network is dependable and seamless thanks to Mobile Ad-hoc Networks (MANETs). Low power and Lossy Networks (LLN) Routing Protocol (RPL) has been designed to make MANET routing more efficient. For different types of traffic, RPL routing can experience problems with packet transmission rates and latency. RPL is an optimal routing protocol for low power lossy networks (LLN) having the capacity to establish a path between resource constraints nodes by using standard objective functions: OF0 and MRHOF. The standard objective functions lead to a decrease in the network lifetime due to increasing the computations for establishing routing between nodes in the heterogeneous network (LLN) due to poor decision problems. Currently, conventional Mobile Ad-hoc Network (MANET) is subjected to different security issues. Weathering those storms would help if you struck a good speed-memory-storage equilibrium. This article presents a security algorithm for MANET networks that employ the Rapid Packet Loss (RPL) routing protocol. The constructed network uses optimization-based deep learning reinforcement learning for MANET route creation. An improved network security algorithm is applied after a route has been set up using (ClonQlearn). The suggested method relies on a lightweight encryption scheme that can be used for both encryption and decryption. The suggested security method uses Elliptic-curve cryptography (ClonQlearn+ECC) for a random key generation based on reinforcement learning (ClonQlearn). The simulation study showed that the proposed ClonQlearn+ECC method improved network performance over the status quo. Secure data transmission is demonstrated by the proposed ClonQlearn + ECC, which also improves network speed. The proposed ClonQlearn + ECC increased network efficiency by 8-10% in terms of packet delivery ratio, 7-13% in terms of throughput, 5-10% in terms of end-to-end delay, and 3-7% in terms of power usage variation

    Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)

    Get PDF
    Decentralized machine learning (FL) is a system that uses federated learning (FL). Without disclosing locally stored sensitive information, FL enables multiple clients to work together to solve conventional distributed ML problems coordinated by a central server. In order to classify FLs, this research relies heavily on machine learning and deep learning techniques. The next generation of wireless networks is anticipated to incorporate unmanned aerial vehicles (UAVs) like drones into both civilian and military applications. The use of artificial intelligence (AI), and more specifically machine learning (ML) methods, to enhance the intelligence of UAV networks is desirable and necessary for the aforementioned uses. Unfortunately, most existing FL paradigms are still centralized, with a singular entity accountable for network-wide ML model aggregation and fusion. This is inappropriate for UAV networks, which frequently feature unreliable nodes and connections, and provides a possible single point of failure. There are many challenges by using high mobility of UAVs, of loss of packet frequent and difficulties in the UAV between the weak links, which affect the reliability while delivering data. An earlier UAV failure is happened by the unbalanced conception of energy and lifetime of the network is decreased; this will accelerate consequently in the overall network. In this paper, we focused mainly on the technique of security while maintaining UAV network in surveillance context, all information collected from different kinds of sources. The trust policies are based on peer-to-peer information which is confirmed by UAV network. A pre-shared UAV list or used by asymmetric encryption security in the proposal system. The wrong information can be identified when the UAV the network is hijacked physically by using this proposed technique. To provide secure routing path by using Secure Location with Intrusion Detection System (SLIDS) and conservation of energy-based prediction of link breakage done by location-based energy efficient routing (LEER) for discovering path of degree connectivity.  Thus, the proposed novel architecture is named as Decentralized Federate Learning- Secure Location with Intrusion Detection System (DFL-SLIDS), which achieves 98% of routing overhead, 93% of end-to-end delay, 92% of energy efficiency, 86.4% of PDR and 97% of throughput

    Secure Energy Aware Optimal Routing using Reinforcement Learning-based Decision-Making with a Hybrid Optimization Algorithm in MANET

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that are perfect for applications such as special outdoor events, communications in areas without wireless infrastructure, crises and natural disasters, and military activities because they do not require any preexisting network infrastructure and can be deployed quickly. Mobile ad hoc networks can be made to last longer through the use of clustering, which is one of the most effective uses of energy. Security is a key issue in the development of ad hoc networks. Many studies have been conducted on how to reduce the energy expenditure of the nodes in this network. The majority of these approaches might conserve energy and extend the life of the nodes. The major goal of this research is to develop an energy-aware, secure mechanism for MANETs. Secure Energy Aware Reinforcement Learning based Decision Making with Hybrid Optimization Algorithm (RL-DMHOA) is proposed for detecting the malicious node in the network. With the assistance of the optimization algorithm, data can be transferred more efficiently by choosing aggregation points that allow individual nodes to conserve power The optimum path is chosen by combining the Particle Swarm Optimization (PSO) and the Bat Algorithm (BA) to create a fitness function that maximizes across-cluster distance, delay, and node energy. Three state-of-the-art methods are compared to the suggested method on a variety of metrics. Throughput of 94.8 percent, average latency of 28.1 percent, malicious detection rate of 91.4 percent, packet delivery ratio of 92.4 percent, and network lifetime of 85.2 percent are all attained with the suggested RL-DMHOA approach

    HIV Testing among Patients with Presumptive Tuberculosis: How Do We Implement in a Routine Programmatic Setting? Results of a Large Operational Research from India.

    Get PDF
    BACKGROUND: In March 2012, World Health Organization recommended that HIV testing should be offered to all patients with presumptive TB (previously called TB suspects). How this is best implemented and monitored in routine health care settings in India was not known. An operational research was conducted in Karnataka State (South India, population 64 million, accounts for 10% of India's HIV burden), to test processes and learn results and challenges of screening presumptive TB patients for HIV within routine health care settings. METHODS: In this cross-sectional study conducted between January-March 2012, all presumptive TB patients attending public sector sputum microscopy centres state-wide were offered HIV testing by the laboratory technician, and referred to the nearest public sector HIV counselling and testing services, usually within the same facility. The HIV status of the patients was recorded in the routine TB laboratory form and TB laboratory register. The laboratory register was compiled to obtain the number of presumptive TB patients whose HIV status was ascertained, and the number found HIV positive. Aggregate data on reasons for non-testing were compiled at district level. RESULTS: Overall, 115,308 patients with presumptive TB were examined for sputum smear microscopy at 645 microscopy centres state-wide. Of these, HIV status was ascertained for 62,847(55%) among whom 7,559(12%) were HIV-positive, and of these, 3,034(40%) were newly diagnosed. Reasons for non-testing were reported for 37,700(72%) of the 52,461 patients without HIV testing; non-availability of testing services at site of sputum collection was cited by health staff in 54% of respondents. Only 4% of patients opted out of HIV testing. CONCLUSION: Offering HIV testing routinely to presumptive TB patients detected large numbers of previously-undetected instances of HIV infection. Several operational challenges were noted which provide useful lessons for improving uptake of HIV testing in this important group

    In Silico Analysis Reveals 75 Members of Mitogen-Activated Protein Kinase Kinase Kinase Gene Family in Rice

    Get PDF
    Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries

    The epidemiologic impact and cost-effectiveness of new tuberculosis vaccines on multidrug-resistant tuberculosis in India and China.

    Get PDF
    BACKGROUND: Despite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown. We investigated the epidemiologic impact, cost-effectiveness, and budget impact of hypothetical novel prophylactic prevention of disease TB vaccines on RR/MDR-TB in China and India. METHODS: We constructed a deterministic, compartmental, age-, drug-resistance- and treatment history-stratified dynamic transmission model of tuberculosis. We introduced novel vaccines from 2027, with post- (PSI) or both pre- and post-infection (P&PI) efficacy, conferring 10 years of protection, with 50% efficacy. We measured vaccine cost-effectiveness over 2027-2050 as USD/DALY averted-against 1-times GDP/capita, and two healthcare opportunity cost-based (HCOC), thresholds. We carried out scenario analyses. RESULTS: By 2050, the P&PI vaccine reduced RR/MDR-TB incidence rate by 71% (UI: 69-72) and 72% (UI: 70-74), and the PSI vaccine by 31% (UI: 30-32) and 44% (UI: 42-47) in China and India, respectively. In India, we found both USD 10 P&PI and PSI vaccines cost-effective at the 1-times GDP and upper HCOC thresholds and P&PI vaccines cost-effective at the lower HCOC threshold. In China, both vaccines were cost-effective at the 1-times GDP threshold. P&PI vaccine remained cost-effective at the lower HCOC threshold with 49% probability and PSI vaccines at the upper HCOC threshold with 21% probability. The P&PI vaccine was predicted to avert 0.9 million (UI: 0.8-1.1) and 1.1 million (UI: 0.9-1.4) second-line therapy regimens in China and India between 2027 and 2050, respectively. CONCLUSIONS: Novel TB vaccination is likely to substantially reduce the future burden of RR/MDR-TB, while averting the need for second-line therapy. Vaccination may be cost-effective depending on vaccine characteristics and setting

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen

    Get PDF
    Background: To retrospectively and prospectively compare abdominal apparent diffusion coefficient (ADC) values obtained within in a 1.5 T system and 3 T systems with and without dual-source parallel RF excitation techniques. Methodology/Principal Findings: After IRB approval, diffusion-weighted (DW) images of the abdomen were obtained on three different MR systems (1.5 T, a first generation 3 T, and a second generation 3 T which incorporates dual-source parallel RF excitation) on 150 patients retrospectively and 19 volunteers (57 examinations total) prospectively. Seven regions of interest (ROI) were throughout the abdomen were selected to measure the ADC. Statistical analysis included independent two-sided t-tests, Mann-Whitney U tests and correlation analysis. In the DW images of the abdomen, mean ADC values were nearly identical with nonsignificant differences when comparing the 1.5 T and second generation 3 T systems in all seven anatomical regions in the patient population and six of the seven in the volunteer population (p.0.05 in all distributions). The strength of correlation measured in the volunteer population between the two scanners in the kidneys ranged from r = 0.64–0.88 and in the remaining regions (besides the spleen), r.0.85. In the patient population the first generation 3 T scanner had different mean ADC values with significant differences (p,0.05) compared to the other two scanners in each of the seven distributions. In the volunteer population, the kidneys shared similar ADC mean values in comparison to the other two scanners with nonsignificant differences
    corecore