12 research outputs found

    Stratified Adversarial Robustness with Rejection

    Full text link
    Recently, there is an emerging interest in adversarially training a classifier with a rejection option (also known as a selective classifier) for boosting adversarial robustness. While rejection can incur a cost in many applications, existing studies typically associate zero cost with rejecting perturbed inputs, which can result in the rejection of numerous slightly-perturbed inputs that could be correctly classified. In this work, we study adversarially-robust classification with rejection in the stratified rejection setting, where the rejection cost is modeled by rejection loss functions monotonically non-increasing in the perturbation magnitude. We theoretically analyze the stratified rejection setting and propose a novel defense method -- Adversarial Training with Consistent Prediction-based Rejection (CPR) -- for building a robust selective classifier. Experiments on image datasets demonstrate that the proposed method significantly outperforms existing methods under strong adaptive attacks. For instance, on CIFAR-10, CPR reduces the total robust loss (for different rejection losses) by at least 7.3% under both seen and unseen attacks.Comment: Paper published at International Conference on Machine Learning (ICML'23

    Comparative analysis of methods for detecting interacting loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted.</p> <p>Results</p> <p>We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding <it>multiple </it>sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs.</p> <p>Conclusion</p> <p>This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: <url>http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list</url>.</p

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Generation bidding game with flexible demand *

    No full text
    Abstract With the onset of large numbers of plug-in electric and hybrid-electric vehicles, requiring overnight charging ahead of the morning commute, a significant portion of electricity demand will be somewhat flexible and accordingly may be responsive to changes in electricity spot prices. For such a responsive demand idealized, we consider a deregulated electricity marketplace wherein the grid (ISO, retailer-distributor) accepts bids per-unit supply from generators (simplified herein neither to consider start-up/ramp-up expenses nor day-ahead or shorter-term load following) which are then averaged (by supply allocations via an economic dispatch) to a common &quot;clearing&quot; price borne by customers (irrespective of variations in transmission/distribution or generation prices), i.e., the ISO does not compensate generators based on their marginal costs. Rather, the ISO provides sufficient information for generators to sensibly adjust their bids. For a generation duopoly with neither transmission capacity bounds nor constraints, there are a surprising plurality of Nash equilibria under quadratic generation costs. In this paper, we explore transmission costs and constraints for any number of generators, and simplify our numerical study by taking the power flow problem only as a &quot;commodity&quot; flow. Notwithstanding our idealizations, we consider a complex dispatch problem the retailer/grid must solve for a demand that depends on the dispatc

    Is the Medical Brain Drain Beneficial? Evidence from Overseas Doctors in the UK

    No full text
    The `beneficial brain drainÂż hypothesis suggests that skilled migration can be good for a sending country because the incentives it creates for obtaining training increase that country's net supply of skilled labour. Necessary conditions for this hypothesis to work are that the possibility of migration significantly affects decisions to take medical training and that migrants are not strongly screened by the host country. We conducted a survey among overseas doctors in the UK in 2002, which suggested that neither condition is likely to be fulfilled. Apart from the `beneficial brain drainÂż argument, the survey findings also cast light on the backgrounds and motives of migrant doctors, and finds evidence that there could, nonetheless, be other benefits to sending countries via routes like remittances and return migration
    corecore