117 research outputs found
Molecular Imaging of Vascular Calcification with 18 F-Sodium-Fluoride in Patients Infected with Human Immunodeficiency Virus
18F-Sodium Fluoride (NaF) accumulates in areas of active hydroxyapatite deposition and potentially unstable atherosclerotic plaques. We assessed the presence of atherosclerotic plaques in 50 adult patients with HIV (HIV+) who had undergone two cardiac computed tomography scans to measure coronary artery calcium (CAC) progression. CAC and its progression are predictive of an unfavorable prognosis. Tracer uptake was quantified in six arterial territories: aortic arch, innominate carotid artery, right and left internal carotid arteries, left coronary (anterior descending and circumflex) and right coronary artery. Thirty-one patients showed CAC progression and 19 did not. At least one territory with high NaF uptake was observed in 150 (50%) of 300 arterial territories. High NaF uptake was detected more often in non-calcified than calcified areas (68% vs. 32%), and in patients without than in those with prior CAC progression (68% vs. 32%). There was no correlation between clinical and demographic variables and NaF uptake. In clinically stable HIV+ patients, half of the arterial territories showed a high NaF uptake, often in the absence of macroscopic calcification. NaF uptake at one time point did not correlate with prior progression of CAC. Prospective studies will demonstrate the prognostic significance of high NaF uptake in HIV+ patients
Lung and Heart Diseases Are Better Predicted by Pack-Years than by Smoking Status or Duration of Smoking Cessation in HIV Patients
BACKGROUND: The objective of this study was to assess the relationship of pack-years smoking and time since smoking cessation with risk of lung and heart disease.
METHODS: We investigated the history of lung and heart disease in 903 HIV-infected patients who had undergone thoracic computed tomography (CT) imaging stratified by smoking history. Multimorbidity lung and heart disease (MLHD) was defined as the presence of 65 2 clinical or subclinical lung abnormalities and at least one heart abnormality.
RESULTS: Among 903 patients, 23.7% had never smoked, 28.7% were former smokers and 47.6% were current smokers. Spirometry indicated chronic obstructive pulmonary disease in 11.4% of patients and MLHD was present in 53.6%. Age, male sex, greater pack-years smoking history and smoking cessation less than 5 years earlier vs. more than 10 years earlier (OR 2.59, 95% CI 1.27-5.29, p = 0.009) were independently associated with CT detected subclinical lung and heart disease. Pack-years smoking history was more strongly associated with MLHD than smoking status (p<0.001).
CONCLUSIONS: MLHD is common even among HIV-infected patients who never smoked and pack- years smoking history is a stronger predictor than current smoking status of MLHD. A detailed pack-years smoking history should be routinely obtained and smoking cessation strategies implemente
Non-alcoholic to metabolic associated fatty liver disease: Cardiovascular implications of a change in terminology in patients living with HIV
Background and Aims:
It has recently been suggested that the definition of non-alcoholic fatty liver disease (NAFLD) be changed to Metabolic Associated FLD (MAFLD) to better reflect the complex metabolic aspects of this syndrome. We compared the ability of MAFLD and NAFLD to correctly identify high CV risk patients, sub-clinical atherosclerosis or a history of prior CV events (CVEs) in patients living with HIV (PWH).
Methods:
Single center, cross-sectional study of PWH on stable anti-retrovirals. NAFLD was diagnosed by transient liver elastography; published criteria were used to diagnose MAFLD (JHepatol.2020;73(1):202-209). Four mutually exclusive groups were considered: low (<7.5%) vs high (>7.5%) ASCVD risk, subclinical CVD (carotid IMT ≥1 mm and/or coronary calcium score >100), and prior CVEs. The association of NAFLD and MAFLD with the CVD risk groups was explored via a multinominal model adjusted for age, sex, liver fibrosis, HIV duration, nadir CD4 and current CD4 cell count.
Results:
We included 1249 PWH (mean age 55 years, 74% men, median HIV duration 24 years). Prevalence of overweight/obesity and diabetes was 40% and 18%. Prevalence of NAFLD and MAFLD and overlapping groups are shown in Fig 1A. Fig 1B shows distribution of NAFLD/MAFLD in the 4 patient categories (p-for-trend <0.001). Both MAFLD and NAFLD were significantly associated with an increased risk of CVD compared to the reference level (ASCVD<7.5%) (all p-values <0.004; Fig 2).
Conclusions:
NAFLD and MAFLD perform equally in detecting CVD or its risk. The proposed change in terminology may not help to identify PWH requiring enhanced surveillance and preventative interventions for cardiovascular disease
A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System
The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line ((AX)iAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment ((AX)lung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. (AX)iAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, (AX)iAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor β1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that (AX)iAECs cultured on the (AX)lung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm(2)) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics
The physiological interactome of TCR-like antibody therapeutics in human tissues
Selective binding of TCR-like antibodies that target a single tumour-specific peptide antigen presented by human leukocyte antigens (HLA) is the absolute prerequisite for their therapeutic suitability and patient safety. To date, selectivity assessment has been limited to peptide library screening and predictive modeling. We developed an experimental platform to de novo identify interactomes of TCR-like antibodies directly in human tissues using mass spectrometry. As proof of concept, we confirm the target epitope of a MAGE-A4-specific TCR-like antibody. We further determine cross-reactive peptide sequences for ESK1, a TCR-like antibody with known off-target activity, in human liver tissue. We confirm off-target-induced T cell activation and ESK1-mediated liver spheroid killing. Off-target sequences feature an amino acid motif that allows a structural groove-coordination mimicking that of the target peptide, therefore allowing the interaction with the engager molecule. We conclude that our strategy offers an accurate, scalable route for evaluating the non-clinical safety profile of TCR-like antibody therapeutics prior to first-in-human clinical application
A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death
: The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways
Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19
Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19
- …