616 research outputs found

    Density Waves Excited by Low-Mass Planets in Protoplanetary Disks I: Linear Regime

    Full text link
    Density waves excited by planets embedded in protoplanetary disks play a central role in planetary migration and gap opening processes. We carry out 2D shearing sheet simulations to study the linear regime of wave evolution with the grid-based code Athena, and provide detailed comparisons with the theoretical predictions. Low mass planets (down to ~0.03 Earth mass at 1 AU) and high spatial resolution (256 grid points per scale height) are chosen to mitigate the effects of wave nonlinearity. To complement the existing numerical studies, we focus on the primary physical variables such as the spatial profile of the wave, torque density, and the angular momentum flux carried by the wave, instead of secondary quantities such as the planetary migration rate. Our results show percent level agreement with theory in both physical and Fourier space. New phenomena such as the change of the toque density sign far from the planet are discovered and discussed. Also, we explore the effect of the numerical algorithms, and find that a high order of accuracy, high resolution, and an accurate planetary potential are crucial to achieve good agreement with the theory. We find that the use of a too large time-step without properly resolving the dynamical time scale around the planet produces incorrect results, and may lead to spurious gap opening. Global simulations of planet migration and gap opening violating this requirement may be affected by spurious effects resulting in e.g. the incorrect planetary migration rate and gap opening mass.Comment: single column, 44 pages, 12 figures, ApJ in press, minor corrections mad

    Fast accretion of small planetesimals by protoplanetary cores

    Full text link
    We explore the dynamics of small planetesimals coexisting with massive protoplanetary cores in a gaseous nebula. Gas drag strongly affects the motion of small bodies leading to the decay of their eccentricities and inclinations, which are excited by the gravity of protoplanetary cores. Drag acting on larger (≳1\gtrsim 1 km), high velocity planetesimals causes a mere reduction of their average random velocity. By contrast, drag qualitatively changes the dynamics of smaller (≲0.1−1\lesssim 0.1-1 km), low velocity objects: (1) small planetesimals sediment towards the midplane of the nebula forming vertically thin subdisk; (2) their random velocities rapidly decay between successive passages of the cores and, as a result, encounters with cores typically occur at the minimum relative velocity allowed by the shear in the disk. This leads to a drastic increase in the accretion rate of small planetesimals by the protoplanetary cores, allowing cores to grow faster than expected in the simple oligarchic picture, provided that the population of small planetesimals contains more than roughly 1% of the solid mass in the nebula. Fragmentation of larger planetesimals (≳1\gtrsim 1 km) in energetic collisions triggered by the gravitational scattering by cores can easily channel this amount of material into small bodies on reasonable timescales (<1< 1 Myr in the outer Solar System), providing a means for the rapid growth (within several Myr at 30 AU) of rather massive protoplanetary cores. Effects of inelastic collisions between planetesimals and presence of multiple protoplanetary cores are discussed.Comment: 17 pages, 8 figures, additional clarifications, 1 more figure and table adde

    Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering

    Get PDF
    The process of gravitational scattering of planetesimals by a massive protoplanetary embryo is explored theoretically. We propose a method to describe the evolution of the disk surface density, eccentricity, and inclination caused by the embryo-planetesimal interaction. It relies on the analytical treatment of the scattering in two extreme regimes of the planetesimal epicyclic velocities: shear-dominated (dynamically ``cold'') and dispersion-dominated (dynamically ``hot''). In the former, planetesimal scattering can be treated as a deterministic process. In the latter, scattering is mostly weak because of the large relative velocities of interacting bodies. This allows one to use the Fokker-Planck approximation and the two-body approximation to explore the disk evolution. We compare the results obtained by this method with the outcomes of the direct numerical integrations of planetesimal orbits and they agree quite well. In the intermediate velocity regime an approximate treatment of the disk evolution is proposed based on interpolation between the two extreme regimes. We also calculate the rate of embryo's mass growth in an inhomogeneous planetesimal disk and demonstrate that it is in agreement with both the simulations and earlier calculations. Finally we discuss the question of the direction of the embryo-planetesimal interaction in the dispersion-dominated regime and demonstrate that it is repulsive. This means that the embryo always forms a gap in the disk around it, which is in contrast with the results of other authors. The machinery developed here will be applied to realistic protoplanetary systems in future papers.Comment: 40 pages, 9 figures, submitted to A
    • …
    corecore